I
s

.

rorappienisand Apple 1168, Hardware Reference

IMB AppIe sy, A pple Computer, Inc.

Second Edition

r

«.

rorgpiens nd - Apple 11Gs, Hardware Reference

1 MB Apple IlGs
Second Edition

A
v

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney

Singapore Tokyo Madrid San Juan

APPLE COMPUTER, INC.

Copyright © 1989 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieva
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise,
without prior written
permission of Apple Computer,
Inc. Printed in the United
States of America.

Apple, the Apple logo,
AppleTalk, Apple IIGS,
DuoDisk, ImageWriter,
LaserWriter, Macintosh,
ProDOS, and SANE are
registered trademarks of Apple
Computer, Inc.

Apple Desktop Bus, GS/OS, and
UniDisk are trademarks of
Apple Computer, Inc.

ITC Garamond and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems,
Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-52389-2
ABCDEFGHIJ-MU-89
First Printing, September 1989

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF MERCHAN-
TABILITY AND FITNESS FOR
A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM
THE DATE OF THE
ORIGINAL RETAIL PUR-
CHASE OF THIS PRODUCT.

Even though Apple has
reviewed this manual, APPLE
MAKES NO WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED,
WITH RESPECT TO THIS
MANUAL, ITS QUALITY
ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS
A RESULT, THIS MANUAL IS
SOLD “AS IS,” AND YOU,
THE PURCHASER, ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE
BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT OR INACCURACY
IN THIS MANUAL, even if
advised of the possibility of
such damages.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No
Apple dealer, agent, or
employee is authorized to
make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of
implied warranties or liability
for incidental or consequential
damages, so the above
limitation or exclusion may not
apply to you. This warram){)
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

Contents

Figures and tables xi

Preface / xix

About this manual / xx
What this manual contains / xx
Conventions and usage in this manual / xxii
Special messages / xxii
Memory sizes / xxiii
Altering register contents / xxiii

Introduction to the Apple IIGS / 1

Apple I compatibility / 2
Apple IIGs features / 3
1 MB Apple 1IGS additional features / 4
Removing the cover / 5
Peripheral expansion slots / 6
Connectors / 6
Serial ports / 7
Disk drive port / 7
RGB video connector / 7
Composite video connector / 7
Apple Desktop Bus / 7
Game connector / 7
A closer look / 8
The Mega II subsystem / 8
The Fast Processor Interface (FPI) subsystem / 8

2 The Core of the Apple IIGS / 11

The Mega II custom IC / 13
The FPI custom IC / 14
Synchronization / 14
The Mega I cycle / 15
Mega II auxiliary memory bank access / 16
Memory allocation / 16
Memory shadowing / 18
The Shadow register / 19
The Speed register / 22
RAM control / 24
1/O space addresses / 24

3 Memory / 27
Built-in memory / 29

Memory map / 29
Memory bank allocation / 31
Address wrapping / 31
ROM memory / 31

Bank $00 memory allocation / 32
Reserved memory pages / 32
Language-card memory space / 35
The State register / 39

Bank $01 (auxiliary memory) / 41
Bank switching for auxiliary memory / 43

Banks $E0 and $E1 / 45
The display buffers / 46
Firmware workspace / 47

Apple 1I program memory use / 48
Banks $00 and $01 / 48
Shadowing / 49
Screen holes / 49

Memory expansion / 49

The memory expansion slot / 49
Memory expansion signals / 50

Extended RAM / 51
Extended RAM mapping / 52

Extended ROM / 52

Address multiplexing / 54

iv Apple 1IGS Hardware Reference

4 The Video Displays / 55

Apple 11Gs display features / 56
Video from the Mega I IC / 56
The Video Graphics Controller / 56
VGC interrupts / 58
The VGC Interrupt register / 59
The VGC Interrupt-Clear register / 60
Video outputs / 61
Apple II video / 62
NTSC versus RGB video / 70
Video display pages / 71
Display mode switching / 72
Mixing address modes / 75
Addressing display pages directly / 75
The text window / 76
Text displays / 78
Text modes / 78
Text character sets / 78
Color text / 81
Text and background color / 81
Border color / 81
Monochrome/Color register / 82
Graphics displays / 84
Standard Apple I graphics modes / 84
Lo-Res graphics / 84
Hi-Res graphics / 85
Double Hi-Res graphics / 87
Super Hi-Res graphics / 89
The New-Video register / 89
The Super Hi-Res graphics buffer / 91
Scan-line control bytes ($9D00-$§9DC7) / 92
Color palettes ($9E00-$9FFF) / 94
Pixels / 95
Dithering / 98
Color Fill mode / 98

Contents

5 Apple IIGS Sound / 101

The built-in speaker / 102
One-bit sound / 103
Sound synthesis / 103
The Sound GLU / 104
The Sound Control register / 104
Data register / 105
Address Pointer registers / 106
Write operation / 106
Read operation / 107
The Ensonig DOC / 107
DOC registers common to all oscillators / 108
The Oscillator Interrupt register (SE0) / 108
The Oscillator Enable register (SE1) / 108
The A/D Converter register (SE2) / 109
DOC registers for individual oscillators / 109
The Oscillator Control registers (SA0-SBF) / 109
The Oscillator Data registers ($60-$7F) / 111
The Volume registers ($40-$5F) / 111
The Frequency High and Frequency Low registers ($00-$3F) / 113
The Wavetable Size registers ($C0-SDF) / 113
The Wavetable Pointer registers (§80-$9F) / 115
Making sound with the DOC / 115
Sound input and output specifications / 119
Further reading / 120

6 The Apple Desktop Bus / 121
The input bus / 123
The keyboard / 124
ADB and the upgraded Apple Ile / 125
Reading the keyboard / 125
The ADB microcontroller / 127
The ADB GLU / 127
The ADB GLU registers / 127
ADB Command/Data register / 128
Keyboard Data register / 128
Modifier Key register / 130
Mouse Data register / 130
ADB Status register / 132

vi Apple TGS Hardware Reference

Bus communication / 133
Commands and global signals / 134
Transactions / 134
Commands / 136
Talk / 136
Listen / 137
Send Reset / 137
Flush / 137
Broadcast signals / 137
Attention and Sync / 138
Global Reset / 138
Service Request / 138
Error conditions / 139
Apple Desktop Bus peripheral devices / 140
Device registers / 140
Register 0 / 140
Register 1 / 143
Register 2 / 143
Register 3 / 143
Device handlers / 144
Device addresses / 144
Collision detection / 146
Service Request enable/disable / 146
1 MB Apple IIGs / 147
Sticky keys / 147
ADB mouse / 147

7 Built-in I/0 Ports and Clock / 149

The disk port / 150
Apple II compatibility / 151
The disk-port connector / 151
The Disk Interface register / 152
The IWM / 153
The Mode register / 155
The Status register / 157
The Handshake register / 158
The data register / 159

Contents vii

The serial ports / 159

Noncompatibility with ACIA / 160

The Serial Communications Controller / 160
The game 1/0 port / 164

Game I/O / 165

The hand-control signals / 166

Summary of secondary I/O locations / 168

Built-in real-time clock / 169

8 1/0 Expansion Slots / 171

The expansion slots / 173
Apple 1T compatibility / 176
Direct memory access / 176
1/0 in the Apple 1IGs / 177
Slot I/O cards / 177
DMA cards / 177
Expansion-slot signals / 178
The buffered address bus / 178
The slot data bus / 179
Interrupt and DMA daisy chains / 180
Loading and driving rules / 180
Peripheral programming / 181
Selecting a device / 181
The Slot register / 181
Peripheral-card memory spaces / 183
Peripheral-card I/O space / 184
Peripheral-card ROM space / 184
Expansion ROM space / 185
Peripheral-card RAM space / 187
I/O programming suggestions / 187
Finding the slot number with ROM switched in / 188
I/0 addressing / 189
RAM addressing / 190
Other uses of I/O memory space / 191
Switching I/0 memory / 192
Developing cards for slot 3 / 193
Interrupts / 193
What is an interrupt? / 194
Timing diagrams / 194

viii Apple IIGS Hardware Reference

9

10

Power Supply / 201

Description / 202
Specifications / 202
Power connector / 203

The 65C816 Microprocessor / 205

The features of the 65C816 / 207
The 16-bit 65C816 / 208
Microprocessor differences / 209
The registers / 210
The accumulator / 210
X Index register / 210
Y Index register / 210
Data bank register / 210
Stack pointer / 211
Program Status register / 211
Program counter / 214
Program bank register / 214
Direct register / 214
Emulating the 6502 / 214
Operating speed / 215
Further reading / 215
05C816 data sheets / 215

Roadmap to the Apple IIGS / 239

The introductory manuals / 242

The technical introduction / 242

The programmer’s introduction / 242
The machine reference manuals / 243

The hardware reference manual / 243

The firmware reference manual / 243
The toolbox reference manuals / 243
The programmer’s workshop reference manual / 244
The programming-language reference manuals / 245
The operating-system reference manuals / 245
APW and MPW manuals / 246
The all-Apple manuals / 246

Contents

ix

X

B International Keyboards / 247

C The Character Generator / 251

The character generator ROM / 252
U.S. characters / 252
International characters / 252
MouseText characters / 253

D Conversion Tables / 255
Bits and bytes / 256
Hexadecimal and decimal numbers / 257
Hexadecimal and negative-decimal numbers / 259
Peripheral identification numbers / 260
ASCII code conversion / 262

E Frequently Used Tables / 267

Glossary / 281
Index / 297

Addendum Schematic Diagrams

Apple 1IGS Hardware Reference

Chapter 1

Chapter 2

Chapter 3

Figures and tables

Introduction to the Apple IIs / 1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5

The Apple 1IGS / 2

Releasing the snap locks to remove the cover / 4
The Apple I1Gs with the cover removed / 5
Apple TIGS connectors / 6

Block diagram of the Apple IIGS / 9

The Core of the Apple IIs / 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Table 2-1
Table 2-2

Memory

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Table 3-1
Table 3-2
Table 3-3
Table 3-4

Mega II and FPI subsystems in the Apple IIGs / 12
Stretched @0 clock cycle / 15

Apple 1IGS memory map / 17

Shadowed areas of memory / 18

Shadow register at $C035 / 20

Speed register at $C036 / 22

Bits in the Shadow register / 20

Bits in the Speed register / 23

/ 27

Memory in the Apple IIGS / 28

Memory map of the Apple 1IGS / 30

Shadowed display spaces in banks $00 and $01 / 34
Language-card memory map / 30

State register at $C008 / 39

Memory map of main and auxiliary memory / 42
Memory map of banks $E0 and $E1 / 46
Memory expansion slot / 50

Extended RAM mapping / 53

Language-card bank-select switches / 37

Bits in the State register / 40

Auxiliary-memory select switches / 44
Memory-card interface signals / 51

Figures and tables

xi

Chapter 4 The Video Displays / 55

Figure 4-1 Video components in the Apple 1IGS / 57
Figure 4-2 Scan-line interrupt / 58

Figure 4-3 VGC Interrupt register at $C023 / 59

Figure 4-4 VGC Interrupt-Clear register at $C032 / 61
Figure 4-5 Map of 40-column text Page 1 display / 65
Figure 4-6 Map of 80-column text display / 66

Figure 47 Map of Lo-Res graphics Page 1 display / 67
Figure 4-8 Map of Hi-Res graphics Page 1 display / 68
Figure 49 Map of Double Hi-Res graphics display / 69
Figure 4-10 RGB video connector / 70

Figure 4-11 40-column text display / 80

Figure 4-12 80-column text display / 80

Figure 4-13 Screen Color register at $C022 / 81

Figure 4-14 Border Color register at $C034 / 82

Figure 4-15 Monochrome/Color register at $C021 / 83
Figure 4-16 Hi-Res graphics display bits / 86

Figure 4-17 New-Video register / 91

Figure 4-18 Super Hi-Res graphics display buffer / 92
Figure 4-19 Scan-line control byte format / 93

Figure 4-20 Color palette format / 94

Figure 4-21 Pixel data byte format / 96

Figure 4-22 Drawing pixels on the screen / 97

Figure 4-23 Examples of dithering / 99

Table 4-1 Bits in the VGC Interrupt register / 60
Table 4-2 Bits in the VGC Interrupt-Clear register / 61
Table 4-3 Text and background colors / 62

Table 4-4 Standard Apple II video display specifications / 64
Table 4-5 RGB video signals / 70

Table 4-6 Video display locations / 72

Table 4-7 Display soft switches / 73

Table 4-8 Video display mode combinations / 75
Table 4-9 Text window memory locations / 77

Table 4-10 Display character sets / 79

Table 4-11 Bits in the Screen Color register / 81

Table 4-12 Bits in the Border Color register / 82

Table 4-13 Bits in the Monochrome/Color register / 83
Table 4-14 Lo-Res graphics colors / 85

Table 4-15 Hi-Res graphics colors / 87

Table 416 Double Hi-Res graphics colors / 88

Table 4-17 Bits in the New-Video register / 90

Table 4-18 Memory bank selection using bit 0 of the New-Video register / 91

xii ~ Apple IIGs Hardware Reference

Chapter 5

Chapter 6

Table 4-19
Table 4-20
Table 4-21

Bits in a scan-line control byte / 93
Palette and color starting addresses / 95
Color selection in 640 mode / 96

Apple 1IGs Sound / 101

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8

Sound components in the Apple 1IGs / 102

Sound Control register at $C03C / 105

Address Pointer registers / 106

Oscillator Interrupt register at $E0 / 108

Oscillator Control register / 111

Wavetable Size register / 113

Final address calculation in the Wavetable Size register / 116
Generating the sound addresses / 117

Combined output of time-domain multiplexed oscillators / 118

A two-channel demultiplexer circuit / 120

GLU registers / 104

Bits in the Sound Control register / 105

Bits in the Oscillator Interrupt register / 109
DOC register addresses / 110

Bits in the Oscillator Control register / 112

Bits in the Wavetable Size register / 114
Wavetable size determination / 114

Sound input and output electrical specifications
for connector J-25 / 119

The Apple Desktop Bus / 121

Figure 6-1
Figure 6-2
Figure 0-3
Figure 6-4
Figure 6-5
Figure 6-0
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15

ADB components in the Apple IIGs / 122

ADB components / 123

Mini-DIN connector pin configuration used in the ADB / 124
ADB Command/Data register at $C026 / 128
Keyboard Data register at $C000 / 128

Modifier Key register at $C025 / 131

Mouse Data register at $C024 / 131

ADB Status register at $C027 / 132

Bit representation via duty-cycle modulation / 134
A typical transaction / 135

Attention and Sync signals / 138

Service Request / 139

Keyboard register 0 / 141

Mouse register 0 / 142

Device register 3 / 143

Figures and tables

xiii

Xiv

Figure 6-16 ADB mouse keypad / 148

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16

Pin assignments of the ADB connectors / 124
Keyboard Data locations / 125

Bits in the ADB Command/Data register / 129
Bits in the Keyboard Data register / 129

Bits in the Modifier Key register / 130

Bits in the Mouse Data register / 131

Bits in the ADB Status register / 132

ADB timing specifications / 136

Command byte syntax / 137

Bits in keyboard register 0 / 141

Bits in mouse register 0 / 142

Bits in device register 3 / 144

Reserved device handlers / 145

Device addresses / 145

Sticky keys functions / 147

ADB mouse functions / 148

Chapter 7 Built-in I/O Ports and Clock / 149

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 7-11
Table 7-12

I/O components of the Apple IIGs / 150
Disk-port connector / 151

Disk Interface register at $C031 / 153

Mode register / 156

Status register / 157

Handshake register / 158

Pin configuration of a serial-port connector / 159
Zilog Serial Communications Controller chip / 161
Data paths in the Zilog SCC / 164

Game 1/0O connectors / 165

Control register at $C034 / 170

Pins on the disk-port connector / 152

Bits in the Disk Interface register / 153
Disk-port soft switches / 154

IWM states / 155

Controlling the disk select signals / 155

Bits in the Mode register / 156

Bits in the Status register / 157

Bits in the Handshake register / 158

Pins on a serial-port connector / 160

SCC Command and SCC Data register addresses / 161
SCC read register functions / 162

SCC write register functions / 163

Apple 1IGS Hardware Reference

Table 7-13
Tabl 7 14
} le

Game 1/0 signals / 165

Annunciator memory locations / 167
Secondary I/O memory locations / 168
Bits in the control register / 170

Chapter 8 1/0 Expansion Slots / 171

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-0
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
ible 8-9
Table 8-10
Table 8-11

Expansion slots and other components in the Apple IIGs / 172
Peripheral-expansion slot pins / 173

Data buses within the Apple IIGs / 179

Slot register at $C02D / 182

Expansion ROM enable circuit / 186

ROM disable address decoding / 186

I/0 memory map / 191

1/0 clock and control timing / 195

I/0 read and write timing / 196

1/0 read and write timing with /INH active / 198

/DMA read and write timing / 199

Expansion slot signals / 174

Bits in the Slot register / 183

Peripheral-card 1/0 memory locations enabled by /DEVSEL / 184
Peripheral-card 1/0 memory locations enabled by /IOSEL / 185
Peripheral-card RAM memory locations / 187

Peripheral-card I/O base addresses / 189

I/0 memory switches / 192

1/0 clock and control timing parameters / 195

I/O read and write timing parameters / 197

[/O read and write timing parameters with /INH active / 197
/DMA read and write timing parameters / 199

Chapter 9 Power Supply / 201

Figure 9-1
. Table 9-1

Power-supply connector / 203
Pins on the power-supply connector / 203

Chapter 10 The 65C816 Microprocessor / 205

Figure 10-1
Figure 10-2
Figure 10-3
Table 10-1
Table 10-2

65C816 in the Apple 11GS system / 206
65C816 registers / 209

Program Status register / 211

Some 6500 family ties / 208

Bits in the Program Status register / 212

Figures and tables

XV

Appendix A Roadmap to the Apple Iis / 239

Figure A-1 Roadmap to the technical manuals / 241
Table A-1 Apple 1IGS technical manuals / 240

Appendix B International Keyboards / 267

Figure B-1 U.S. English keyboard / 268
Figure B-2 UK. English keyboard / 268
Figure B-3 Canadian keyboard / 268
Figure B-4 French keyboard / 269
Figure B-5 German keyboard / 269
Figure B-6 Italian keyboard / 269
Figure B-7 Spanish keyboard / 270
Figure B-8 Swedish keyboard / 270

Appendix C The Character Generator / 251

Figure C-1 U.S. characters / 252
Figure C-2 MouseText characters / 253
Table C-1 International characters / 253

Appendix D Conversion Tables / 255

Figure D-1 ~ Format of PIN numbers / 260

Table D-1 ~ What a bit can represent / 257

Table D-2 Binary, hexadecimal, and decimal equivalents / 257
Table D-3 Hexadecimal and decimal powers / 258

Table D-4 Hexadecimal to negative-decimal conversion / 259
Table D-5 Codes for PIN numbers / 261

Table D-6 Control characters, high bit off / 263

Table D-7 Special characters, high bit off / 264

Table D-8 Uppercase characters, high bit off / 265

Table D-9 Lowercase characters, high bit off / 266

xvi Apple IIGs Hardware Reference

Appendix E Frequently Used Tables / 267

Table E-1 Language-card bank select switches / 208

Table E-2 Auxiliary-memory select switches / 269

Table E-3 Standard Apple II video display specifications / 270
Table E-4 Video display locations / 270

Table E-5 Display soft switches / 271

Table E-6 Text window memory locations / 272

Table E-7 Display character sets / 272

Table E-8 Lo-Res graphics colors / 273

Table E-9 Hi-Res graphics colors / 273

Table E-10 Double Hi-Res graphics colors / 274

Table E-11 Palette and color starting addresses / 274

Table E-12 GLU registers / 274

Table E-13 DOC register addresses / 275

Table E-14 Disk-port soft switches / 276

Table E-15 The IWM states / 277

Table E-16 SCC Command and SCC data register addresses / 277
Table E-17 Annunciator memory locations / 277

Table E-18 Secondary I/O memory locations / 278

Table E-19 Peripheral-card RAM memory locations / 278

Table E-20 Peripheral-card I/O base addresses / 279

Figures and tables xvii

Preface

This is the hardware reference manual for the Apple 11Gs®
computer, including the original 256K Apple IIGS and the 1 MB
Apple 1IGS computers. It is primarily for hardware designers and

programmers who want to know how to manipulate the hardware,

but will also be useful to anyone wanting to know how to take
advantage of all the features of these computers.

Xix

About this manual

As part of the Apple IIGS technical suite of manuals, the Apple 1IGS Hardware Reference
covers the design and function of the Apple 1IGS hardware. It provides hardware design
and interface information and is intended for people who have an understanding of
digital microprocessor electronics and who are interested in interfacing the Apple IIGS to
the outside world. Programmers who are using the sound and graphics capabilities of the
Apple IIGS should also refer to this manual so that they can have a good understanding of
how software affects the hardware.

The Apple 1IGs is, above all, an Apple II. This manual introduces the computer’s features
and also describes how the Apple 1IGS maintains compatibility with previous Apple II
models.

Specifically, this manual

m introduces the features of the Apple IIGS hardware

m describes the Apple II-compatible functions

m provides addresses where necessary for manipulating the hardware

m provides input/output (I/O) information for interfacing signals to the outside world
Unlike previous Apple technical reference manuals, this one does not document firmware
features; they are covered in detail in the Apple IIGS Firmware Reference. The Apple 11GS
uses a set of low-level tool utilities to perform certain functions. Programmers are

expected to use these tools to perform sound and graphics operations whenever
available. Read the Apple 1IGS Toolbox Reference for more information.

What this manual contains

Each chapter in this manual describes a different aspect of the computer. Each chapter is
modular in scope, describing the particular aspect of the Apple IIGS and making
references to other chapters and manuals where necessary.

Chapter 1 introduces the features of the Apple IIGs.

Chapter 2, “The Core of the Apple IIGS,” describes the heart the Apple 11Gs, the Mega II,
and the Fast Processor Interface (FPI) custom integrated circuits.

xx Apple IIGS Hardware Reference

Chapter 3, “Memory,” describes the organization of the built-in memory as well as the
memory expansion slot, and tells how to design and access a memory expansion card for
this special slot.

Chapter 4, “The Video Displays,” goes in depth into how the standard Apple II graphics
modes work, and how to make the Super Hi-Res graphics work for you.

Chapter 5, “Apple I1GS Sound,” shows you how to use the 32 digital oscillators to generate
sound.

Chapter 6, “The Apple Desktop Bus,” provides details of the hardware and protocol
required to design and connect an input device (keyboard, mouse, graphics tablet, and so
on) to this input bus.

Chapter 7, “Built-in I/O Ports and Clock,” describes the disk port, the serial ports, the
game port, and the real-time clock.

Chapter 8, “I/O Expansion Slots,” lists the I/O signals available at the expansion slots, and
gives loading precautions and programming suggestions for the slot cards. DMA and
interrupts are described here also.

Chapter 9 briefly describes the Apple IIGS power supply and lists its specifications.
Chapter 10 covers the 65C816 microprocessor.

Appendix A contains a roadmap to the Apple 1IGS technical suite of manuals. Read this
appendix to determine which books will help you to learn more about a programming
language, the Apple IIGs firmware, or other aspect of the computer.

Appendix B has eight international keyboard layouts.

Appendix C shows you the contents of the character generator—all the characters the
Apple TIGS can display.

Appendix D has tables that show what a bit and a byte can represent. Conversion tables
between hexadecimal, decimal, and negative decimal, as well as 7-bit ASCII, are provided.

Appendix E contains some of the most frequently used tables taken from throughout the
manual.

A glossary follows the appendixes.

An addendum, after the index, contains schematic diagrams showing all of the electrical
components of the main circuit board.

Preface

XXxi

Conventions and usage in this manual

The Apple II and Apple II Plus are standard Apple 1T computers. In this manual, reference
is made to the compatibility of the Apple IIGS with standard Apple I computers. This
means that the Apple IIGS will run software written for an Apple II or Apple II Plus
computer. A particular function that the Apple IIGS has in common with the Apple Ile or
Apple I, for instance, will be mentioned specifically as such.

A revised Apple 1IGS, the 1 MB Apple IIGS, was introduced into the Apple II family in mid-
1989. This new main logic board differs from the original main logic board in several ways,
but primarily in the amount of RAM supplied on the main logic board. The original Apple
11GS contains 250K of RAM, and the 1 MB Apple 11GS contains 1 megabyte of RAM. Other
differences between the computers are detailed in the pertinent sections of each chapter.
Information throughout this manual pertains to both versions of the main logic board
unless otherwise indicated.

Special messages

Some text in this manual is set off from the rest in special ways:

¢ Note: A note usually contains information that is interesting but not necessary for an
understanding of the main text.

/\ Important Text set off like this presents especially important information.

A Warning The warning message contains information that, if ignored, could
result in loss of data, damage to equipment, or possibly bodily
injury. a

Numbers preceded by a dollar sign are hexadecimal rather than decimal representations
of values. This convention is used throughout this manual.

Words that appear in boldface in the text are defined in the glossary located at the back
of this manual.

xxii Apple IIGS Hardware Reference

Memory sizes

Throughout this manual, memory is given in kilobytes, abbreviated by the letter K; or in
megabytes, abbreviated by the letters MB. A kilobyte equals 1024 (210) bytes, and a
megabyte equals 1024K, or 1024 x 1024 bytes. Therefore, memory sizes in kilobytes and
megabytes are not in even thousands and millions. For example, 5 MB is

1024 x 1024 x 5 = 5,242,880 bytes, not 5,000,000 bytes.

Altering register contents

When programming the Apple IIGS, you will need to manipulate certain bits within
registers and soft switch locations in order to achieve a particular result. Some bits in
these registers or soft switches must be left alone, or the system could crash. These bits
are labeled Reserved: do not modify.

A Warning In order to manipulate the desired bits in these registers and leave
those reserved ones untouched, you must use a read-modify-write
technique. Either of two assembly-language commands can be used to
accomplish this: the test-and-set-bit (TSB) command or the test-and-
reset-bit (TRB) command. Both of these commands allow you to
modify any one bit and leave the others untouched. a

To read about using the TSB and TRB instructions, refer to 65816/65802 Assembly
Language Programming by Michael Fischer, published by Osborne/McGraw-Hill.

Preface

xxiii

Chapter 1 Introduction to the Apple IIGS

The Apple I1GS® is a new computer in the Apple® II family. While
maintaining its roots in the Apple Ile and Apple Ilc, this computer also
provides new features that make it the most powerful Apple II yet. This
first chapter describes generally how the Apple IIGS fits into the Apple II
family and tells what sets it apart from previous Apple II computers.

Figure 1-1 shows the Apple IIGS.

= Figure 1-1 The Apple IIGS

o —
RE

—

—

e

/

==

—

/

P Vi J/

o g %
Ly S S g g 0
55&4,2"/"0"-‘7-‘75""}

=,
SR S

S -
C =
AT
e

Apple IT compatibility

The Apple IIGs is compatible with the Apple II family of computers. Some of the features
the Apple I1GS shares with the Apple Ile and Ilc are

m 6502 processor compatibility, which is maintained by the 65C816 microprocessor
used by the Apple 1IGs

m standard Apple IT graphics, which include Lo-Res mode, Hi-Res mode, and Double
Hi-Res mode color video graphics

m 128K of main RAM
m built-in Applesoft BASIC
® two built-in serial ports

2 Apple T1Gs Hardware Reference

seven peripheral expansion slots, compatible with the Apple Ile

a built-in disk interface port like the Apple Ilc that will accept either 5.25-inch or 3.5-
inch disk drives

built-in Apple II Monitor program
40-column and 80-column text display capability
a game I/0 port for joysticks and hand controls like the Apple Ile and Ilc

Apple IIGS features

Although the Apple 1IGs has many features in common with previous Apple II products, it
has several new features that enhance its performance. Here are a few examples:

The 16-bit CMOS 65C816 microprocessor, which uses a superset of the 6502
instruction set, includes 11 new address modes and 36 new instructions, and is
compatible with 6502 code. To learn more about the 6502 and the 65C02
microprocessors, refer to the Apple Ile Technical Reference and the Apple Ilc Technical
Reference, respectively.

High processing speed, which is selectable between 1.024 MHz or 2.8 MHz.

Super Hi-Res video graphics modes, which offer either 320- or 640-pixel horizontal
resolution, displaying 16 colors per line; these colors may be chosen from a possible 4096.

Analog RGB color video outputs.

256K of RAM built onto the main logic board. You can increase this RAM to over 4 MB
by using an optional expansion card in the memory expansion slot; 896K of ROM also
can be added by using a memory expansion card.

A Control Panel screen, which provides users with means for setting system parameters.
Built-in AppleTalk® network firmware.

Built-in real-time clock (RTC) with a backup battery, which is accessible through the
Control Panel.

Selectable display border, text, and background colors.

A sound synthesizer integrated circuit (IC) with 32 independent oscillators and 64K
of dedicated RAM.

A detachable, international keyboard with keypad.

Apple Desktop Bus'™, whose protocol provides for input devices such as graphics
pads, mouse devices, and keyboards.

Enhanced Monitor firmware, which supports the 65C816 microprocessor.

Chapter 1 Introduction to the Apple IIGS

1 MB Apple IIGS additional features

In mid-1989, Apple introduced the 1 MB main logic board for the Apple IIGs. This logic
board incorporates several features not found on the original logic board. These new
functions of the 1 MB Apple 1IGS computer are as follows:

s The main logic board RAM has been expanded to 1 MB. A memory expansion card
containing up to 4 MB may be added to expand usable memory.

m The main logic board ROM has been expanded to 256K. The ROM now includes all of
the toolbox utilities, previously resident on disk. (Refer to the Apple I1IGS Toolbox
Reference for information on the Apple IIGs Toolbox utilities.) With a ROM expansion
card, an additional 768K of ROM can be addressed.

m A new version of the Apple Desktop Bus (ADB) microcontroller IC provides two
new features:

o Sticky keys
o Keyboard mouse
Also, the new board revision no longer supports the built-in (Apple Ile) keyboard; only

the ADB keyboards are supported by the 1 MB Apple 1IGs. The Apple Desktop Bus is
covered in Chapter 6.

m Shadowing of text Page 2 memory is available for the 1 MB Apple IIGs. A bit in the
Shadow register ($C035) controls whether or not this address space in banks $00 and
$01 is shadowed into banks $E0 and $E1. Chapter 3 describes memory shadowing in
the Apple IIGs.

m The new Apple I1GS logic board provides a reliable means for programs to determine
under what circumstances a cold boot sequence was initiated: a bit in the Speed
register is set when the power switch is turned on. The Speed register is covered in
Chapter 2.

= Figure 1-2 Releasing the snap locks to remove the cover

Z

Qﬁiiitﬂ g

== QQ

4 Apple 1IGs Hardware Reference

Removing the cover

The Apple IIGS has a molded two-piece case. The cover is hinged at the front and is
secured at the rear where the upper and lower halves meet. A snap lock is located at each
side of the rear panel, as shown in Figure 1-2. To remove the cover, press in on each snap
lock while lifting up at the rear of the cover. Pivot the cover at the front and remove it
completely. The main logic board is now exposed for access to the expansion slots.
Figure 1-3 shows the major components of the Apple IIGS.

= Figure 1-3 The Apple 11GS with the cover removed. The 250K machine is shown at
top and the 1 MB machine at bottom.

Memory expansion slot

ROM (128K) includes Applesoft

General-purpose BASIC and Control Panel Program

slots

065C816 microprocessor

RAM (250K)

Memory expansion slot

ROM (256K) includes tools

General-purpose
slots

65C816 microprocessor

RAM (1 MB)

=]

Chapter 1 Introduction to the Apple 1IGS

5

Peripheral expansion slots

The Apple IIGs, like the Apple Ile, has seven expansion slots at the rear of the main logic
board. These slots will accept most Apple II-compatible peripheral cards designed for
any of the Apple IT computers. Note that the Apple IIGS does not have an auxiliary slot
as is found in the Apple Ile. For more information on the peripheral expansion slots, see

Chapter 8, “I/O Expansion Slots.”

Connectors

At the rear of the computer are several connectors. These connectors allow the computer
to be connected to an input device such as a keyboard or a mouse, or a peripheral
device such as a disk drive, a printer, 2 modem, a network, or the like. Figure 1-4 shows

the connectors.

= Figure

Stereo
headphones

Modem
Printer

14 Apple IIGS connectors

/

[

s Y s s

Il

q

™

o b

a=» 00

=
il

gl |
|

)

i
ystic

or hand

J Disk drive

controls

Analog RGB

color monitor

6 Apple 11Gs Hardware Reference

—

Keyboard or other
Apple Desktop Bus
device

Monochrome or
composite color

monitor

Serial ports

The two RS-232-C and RS-422 compatible serial ports use mini-DIN (Deutsche Industrie
Normal) 8-pin connectors. To transmit and receive data to and from a device connected
to a serial port, use the firmware calls in the system read-only memory (ROM). The serial
ports are described in Chapter 7, “Built-in 1/O Ports and Clock.” (To read about how to
use the firmware in the Apple IIGs ROM, refer to the Apple 1IGS Firmware Reference.)

Disk drive port

This connector will accept either 5.25-inch or 3.5-inch Apple disk drives made for the
Apple II. This 19-pin connector is similar in function to the one on the Apple Ilc. For more
information on the disk drive port, see Chapter 7, “Built-in I/O Ports and Clock.”

RGB video connector

This connector provides analog red, green, and blue (RGB) video signals for an analog-
input RGB video monitor. Use only an analog-input RGB monitor with this
15-pin connector. See Chapter 4, “The Video Displays,” for more information.

Composite video connector

Composite video is available at this connector. A standard Apple composite color
monitor can be used to display video. A television may be used to display 40-column text
or graphics: This requires a video modulator to connect the Apple IIGS to a television. See
Chapter 4, “The Video Displays,” for a description of composite video.

Apple Desktop Bus

Connect Apple Desktop Bus (ADB) devices to this connector. These devices may be
ADB keyboards, ADB mouse devices, ADB graphics tablets, or any other input device
designed to the ADB specification. Do not attempt to adapt input devices not designed
for ADB to this connector. See Chapter 6, “The Apple Desktop Bus,” for more information
on using this connector.

Game connector

Connect a standard Apple II hand control or joystick to this connector. Do not adapt an
ADB device to this connector. ADB devices are completely different, and should not be
used. See Chapter 7, “Built-in 1/O Ports and Clock,” for more information on game
connectors and signals.

Chapter 1 Introduction to the Apple IIGS

N

A closer look

You can think of the Apple IIGS system as containing two separate and unique
subsystems. These subsystems are not mutually exclusive; on the contrary, the
subsystems share several components without which they could not function. In
particular, both share the microprocessor, input/output (I/0), memory, video,
and expansion support circuitry.

The Mega II subsystem

The first subsystem, referred to as the Mega II portion of the system because of the
controlling device, consists of the parts of the computer that make the Apple IIGS
compatible with other Apple II products. These are

m the 65C816 microprocessor

m the Mega II custom integrated circuit (IC)

m 128K of standard Apple II memory

m the Video Graphics Controller (VGC) and video generation circuitry

m built-in devices and external I/O slots

Although the Digital Oscillator Chip (DOC) sound synthesizer and support circuitry are

new to the Apple II family of computers, they also fall under control of the Mega II side of
the computer.

The Fast Processor Interface (FPI) subsystem

The second subsystem, referred to as the FPI portion of the system because of the
controlling device, consists of components of the computer that are unique to the
Apple 1IGs. These are

m the 65C816 microprocessor
m the Fast Processor Interface (FPI) custom IC

m 128K of dynamic random-access memory (RAM); the 1 MB Apple IIGS has
1 MB of RAM

m 128K of read-only memory (ROM); the 1 MB Apple 11GS has 250K of ROM
Note that the 65C816 microprocessor is listed as a component of both subsystems. Being
a4 new microprocessor, it has many new instructions that provide this computer with new

capabilities. Also, the 65C816 emulates the 6502 microprocessor and will recognize the
6502 instruction set, which means it will run most existing Apple II software.

8 Apple 1IGS Hardware Reference

Figure 1-5 shows the Apple IIGs computer in block form. Note the dashed line separating
the two subsystems. Although this is a logical division, it is not absolute: The FPI portion
has access to the expansion slots, the Video Graphics Controller, and other components

on the Mega II side.

= Figure 1-5

Block diagram of the Apple 11GS

Slots 1 2

[Uy
LU AN

~1

]

AONANNNANNNN

A A A A A A

Slotmaker
0000 i) U
Game
/0 Digital-to-analog

Veaa I I converters

e 1 Analog RGB

FPI | Vid video
| Video am;l)li?icérc 555555
[Mega II 128K RAM Graphics ;
' Controller

Buffers | NTSC
l Reul—ti}r\ne generator
clock
| Composite
| video
|
I
_______ ﬁ| (256K Apple I1GS
ADB only) Sound
| GLU Retrofit GLU
L I Serial | keypad
65C816 FPI | Communications
128K or | Controller WM -

1 MB RAM | B ADB : 64K
| micro- H RAM
| controller [

. i
| Serial ~ Serial Retrofit Ensoniq
128K or | portA portB Disk keyboard |DOC
. | it S %) (250K Apple IGS
2)6K ROM Memory I po only) : Audio Speak
Memory | Apple amplifier peaker
€xpansion Desktop External
slot | Bus speaker
Chapter 1 Introduction to the Apple IIGS 9

Chapter 2 The Core of the Apple IIGS

The design of the Apple IIGS is radically different from that of the
standard Apple II. The difference arises primarily from three major
components:

m the 65C816 microprocessor
m the Mega II custom IC

m the FPI (Fast Processor Interface) custom IC

The most obvious of these is the 65C816 microprocessor, which is more
powerful than the 6502 used in the standard Apple 11, yet maintains the
ability to execute programs written for the 6502. The 65C816 micro-
processor is important enough to have an entire chapter, Chapter 10,
devoted to it.

The 65C816 has a larger address space, bigger registers, and the ability to
run faster than the standard 1.024-MHz speed of an Apple II. How can
the Apple IIGS take advantage of all these capabilities and still be able
to run programs written for a standard Apple II? The answer to that
question is two custom integrated circuits: the Mega II and the FPI. This
chapter describes the way those two ICs work together in the

Apple IIGS.

11

Figure 2-1 is a simplified block diagram of the Apple IIGS, showing all its major
components. The Mega II and the FPI are shaded gray. The dashed line separates the part
of the Apple IIGS controlled primarily by the Mega II from the part controlled primarily by

the FPL
= Figure 2-1 Mega II and FPI subsystems in the Apple 1IGS
Slots 1 2 3 4 5 0 7
d EH El |
Slotmaker { _ L | L
Digital-to-analog
converters
Analog RGB
| vid video
Video o
| ealt T RN Graphics amplifiers
{ o Controller
Buffers | NTSC
: Real-time generator
clock
| Composite
| video
|
I
_______ “l (256K Apple I1GS
ADB only) | Sound
| GLU Retrofit GLU
| | Serial | keypad
05C816 FPI | Communications
128K or l Controller
IMBRAM | WM DB ik
| micro- RAM
| controller |
. i p——
I Serial Serial 550605000 Retrofit Ill)SgI(ljlq
128K or l portA port B Disk _6keyb0ar d I
256K ROM | port (256K grﬁp;e g ——
Memory l Apple Y amplifier Speaker
expansion | Desktop External
slot | Bus speaker
12 Apple 11GS Hardware Reference

The Mega II custom IC

The Mega II custom IC combines the functions of several circuits found in the Apple Ile.
Those circuits are

m the MMU (Memory Management Unit) custom IC
m the IOU (input/output unit) custom IC

m the character generator ROMs

m the video display circuitry

Except for central processor and memory, the Mega Il incorporates the logic circuitry for
all the major functions of an Apple Ile on a single chip. It works with the I/O expansion
slots and the 1/O ports built into the Apple IIGS and supports the part of memory that
contains the video display buffers. The Mega II side of the machine consists of

m the Mega I

m 128K of memory

m the I/O expansion slots

m the built-in I/O ports

m the video display circuitry

The Mega II contains the circuitry that generates video display signals from the data in the
display buffers, along with the soft switches that select the different display modes.

All 1/0 in the Apple IIGs is memory mapped. The Mega II provides the address decoding
and the soft switches that control the I/O slots and the built-in ports. The Mega II also
provides the refresh cycles for the 128K of dynamic RAM under its control.

Because the memory controlled by the Mega II contains the display buffers, it always runs
at the 1.024-MHz speed. It is sometimes referred to as Apple I standard memory, to
distinguish it from the rest of the memory in the Apple IIGS, which normally runs at

2.8 MHz and hence is called fast memory.

Chapter 2 The Core of the Apple 1IGS 13

)

The FPI custom IC

The FPI (Fast Processor Interface) custom IC supports the 65C816 microprocessor and its
large, fast memory. Its name is doubly descriptive: The FPI controls the fast memory
itself, and also mediates its interaction with the Mega II side of the machine.
Independent control of the two sides enables the Apple IIGS to run programs at 2.8 MHz
while maintaining the 1.024-MHz operation required for compatibility with the standard
video and I/O circuitry.

For the 65C816 and its fast memory, the FPI provides address multiplexing and control
signals. Memory under the control of the FPI includes 128K of built-in RAM (1 MB on the 1
MB Apple 1IGs logic board), 128K of built-in ROM (256K on the 1 MB Apple IIGs logic
board), up to 4 MB of expansion RAM, and up to 1 MB of expansion ROM. The FPI also
generates the refresh cycles needed by the fast dynamic RAM devices. The time required
for the refresh cycles reduces the effective processor speed for programs in RAM by about
8 percent. Programs in ROM run at the full 2.8-MHz speed.

The additional 128K of ROM storage on the 1 MB Apple 1IGs logic board is used for
storing toolbox utilities as well as enhancements to the system firmware. For complete
information on the Apple 1IGs firmware, refer to the Apple IIGS Firmware Reference. For
information on the toolbox utilities, see the Apple 1IGS Toolbox Reference.

Synchronization

Whenever data have to be transferred between the FPI side and the Mega II side, the FPI
IC must first synchronize itself with the 1.024-MHz Mega II. Synchronization may consist
of a single Mega II cycle, as when a single 1/O location in the Mega II must be accessed, or
consecutive Mega II cycles, as when Apple II software must be run at 1.024 MHz for
compatibility. For a single Mega II cycle, there is a delay of up to 1 microsecond (average
0.5 microsecond) while waiting for the beginning of the next cycle. For consecutive

Mega II cycles, the FPI generates one processor cycle for each Mega II cycle, thus running
the processor at 1.024 MHz.

In all Apple IT computers, every 65th processor cycle is elongated, or stretched, by 140
nanoseconds. This practice is required for correct colors in the NTSC (National Television
Standards Committee) video display. Figure 2-2 shows how every 65th clock cycle in all
Apple IT computers is stretched.

14 Apple 11GS Hardware Reference

= Figure 2-2 Stretched 00 clock cycle

65th 00 cycle stretched
by 140 nanoseconds

f—‘ﬁ
03 04 65

oo (- o

Cycle - |
number |

: L

The Mega II cycle

A
¥

A Mega II cycle is needed for any central processor or direct memory access (DMA)
operation that requires access to the 1.024-MHz side of the system. (Refer to Chapter 8,
“I/O Expansion Slots,” for more information about direct memory access.) These
operations are

m all external and most internal I/O operations

m shadowed video-write operations (described in “Memory Shadowing,” later in this
chapter)

m inhibited memory accesses

m Mega Il memory accesses to banks $E0 and $E1

A Mega II cycle consists of these steps:

1. A Mega II cycle begins when the FPI recognizes an address that requires access to the
1.024-MHz side of the system—one of the operations just listed.

2. Approximately 90 nanoseconds after the processor 92 clock signal goes low, the
location address and bank address from the processor become valid. The FPI decodes
these addresses and determines the type of cycle to be executed before the 02 clock
rises.

3. If the cycle is a Mega II cycle, the FPI holds the 02 clock high until it synchronizes
itself with the Mega II.

4. Memory or I/O access begins.

Chapter 2 The Core of the Apple IIGS 15

Mega II auxiliary memory bank access

To allow direct access to the Mega IT auxiliary memory bank, the FPI passes the least
significant bit (Isb) of the bank address to the Mega II during each Mega II cycle. If
shadowing is enabled (as described in “Memory Shadowing,” later in this chapter) or the
software is addressing bank $E0 or $E1, an odd-numbered bank address will access the
Mega II auxiliary memory automatically, without using the soft switches. (For information
on the soft switches, see the discussions on main and auxiliary memory in Chapter 3). For
this setup to work, the programmer must first set bit 0 in the New-Video register at $C029
to 1. (See Chapter 4 for information about the New-Video register.) Otherwise, the

Mega II ignores the bank bit, and the soft switches must then be used to access the
auxiliary 64K through an even-numbered, shadowed bank.

Memory allocation

The FPI controller can access a minimum of 128K of RAM (1 MB on the 1 MB Apple I1GS
logic board), which is expandable to 4.3 MB, and to 5 MB on the 1 MB Apple 11GS logic
board. This RAM is separate from the 128K of RAM supported by the Mega II. The FPI also
has access to 128K of ROM (256K on the 1 MB Apple I1GS logic board), expandable to 1
MB. Figure 2-3 shows a simplified system memory map.

For a full description of memory in the Apple IIGS, refer to Chapter 3.

16 Apple 1IGs Hardware Reference

= Figure 2-3 Apple [IGS memory map
Bank SFF) (Bank SFF
Bank $FE Bank $FE
Bank $FD | __ BankSFD _:
Bank $FC :____B@E$_FQ___ '
e
=== : FastROM — | :
. . (Controlled by FPI) ;
: A e e -
__________ | I____Bd_nE$_FZ_._..___i
L Bank $F2 I I Bank $F1 |
————————— — —————————
:_ Bank $F1 | L L Bank $F0 4
_________ - _ Ay
| Baksro : -
. . /_[Bank $E1
Bank $E1
ank § W Slow RAM Bank $EO
Bank SEO J (Controlled by Mega II) . .
o] (L __ Banks7F |
| BanksE 1) | Bank$7E | |
————————— — —————————7
| Bank $7E | I_ Bank $7D |
Po——sm s N B .
| __Bank$D __ | . .
- kol
BT O ks |
l Bank $10 | Fast RAM | Bank $02 i
Bank $OF (Controlled by FPI) Bank $01 |
Bank $0E L Bank $00 |
|
: : 256K Apple IIGS
. . |
Bank $01 ‘
Bank $00) |
1 MB Apple IGS
l
Chapter 2 The Core of the Apple 1IGS 17

Memory shadowing

Memory shadowing is the process of reading or writing at one memory location in two
different banks. Enabling shadowing duplicates the I/O locations and portions of the
video buffers you select (via the Shadow register) in the shadow-enabled RAM banks.
Writing into those locations in banks for which shadowing has been enabled results in
duplicate writes to those locations in banks $E0 or $E1. Direct access to I/O and the
video buffers is not inhibited and may still be obtained through banks $E0 and $E1. (See
“I/O Space Addresses,” later in this chapter, for more information on 1/O addresses.)

Figure 2-4 shows banks $E0 and $E1.

= Figure 2-4

SFFFF

$E000

$C000

$6000

$4000

$2000
$0C00
$0800
$0400
$0000

Shadow register bits
(r = reserved; do not use)
(*1MB Apple lIGSonly) 7 ¢

18

Bank SEQ

Shadowed areas of memory

Language-card space

I/O space

Hi-Res graphics Page 2

Hi-Res graphics Page 1

Text Page 2
Text Page 1

Apple IIGs Hardware Reference

Bank $E1

Addd

N/ /777

X277
Z
S

SFFFF

$E000

$C000

$A000

Super
| Hi-Res
video
buffer

The purpose of shadowing is to provide optimum system speed. By shadowing the 1/O
and video buffer locations in the high-speed FPI address space, only write instructions to
the video locations require the system to operate at 1.024 MHz. A write instruction
actually writes to an address in both banks, the Mega II bank, $E0 or $E1, and the shadow-
enabled bank, $00 or $01. Read instructions access the high-speed shadowed bank, $00 or
$01. Shadowing, therefore, helps minimize the impact of video display updates on the
overall system speed. (See “I/O Space Addresses,” later in this chapter, for more
information on the impact of 1/O read operations and write operations on system
speed.)

The shadowing options are

m Enable shadowing in banks $00 and $01 only.

m Enable shadowing in all RAM banks (not recommended).

& Note: Although shadowing is possible in other banks, shadowing in banks other than
$00 and $01 should not be attempted under normal operating circumstances; firmware
operating in other banks will be corrupted if shadowing is enabled in those banks,
resulting in a system crash.

Note that slowing of the system for each write operation is very brief and won't affect
program execution speed significantly. Only continuous write accesses would actually be
noticeable.

The Shadow register

The Shadow register, located at $C035, determines which address ranges of each
shadowed 1.024-MHz RAM bank are duplicated in the FPI RAM display areas. The Shadow
register also determines whether or not the 1/O space and language-card (IOLC) areas for
each bank are activated. Figure 2-5 shows the format of the Shadow register. Table 2-1 is a
list of the bits and their functions.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

Chapter 2 The Core of the Apple IIGS

B

19

Inhibit shadowing, auxiliary bank Hi-Res graphics pages —

Figure 2-5

Reserved; do not modify J

Inhibit I/O and language-card operation

Inhibit shadowing, Super Hi-Res graphics buffer —

Table 2-1

Shadow register at $C035

Inhibit shadowing, text Page 2

Inhibit shadowing, Hi-Res graphics Page 2 —
Inhibit shadowing, Hi-Res graphics Page 1 —

716

N
=N
(S
no
—_
(e

Inhibit shadowing, text Page 1 —

Bits in the Shadow register

Bit

Value

Description

20

Reserved; do not modify.

The 1/0 and language-card (IOLC) inhibit bit: This bit
controls whether the 4K range from $C000 to $CFFF in
banks $00 and $01 acts as RAM or as 1/0. When this bit
is 0, I/O is enabled in the $Cxxx space and the RAM that
would normally occupy this space becomes a second
$Dxxx RAM space in banks $00 and $01, forming a
language card. Note that the 1/O space and language
card in banks $E0 and $E1 are not affected by this bit;
this space is always enabled.

When this bit is 1, the I/O space and language card are
inhibited, and contiguous RAM is available from $0000
through $FFFF. (For more information on I/O and
language-card memory spaces, see

Chapter 3, “Memory.”")

Text Page 2 inhibit (available only on the 1 MB logic
board): When this bit is 1, shadowing is disabled for
text Page 2 and auxiliary text Page 2.

Apple 11GS Hardware Reference

s Table 2-1

Bits in the Shadow register (Continued)

Bit

Value Description

0 When this bit is 0, shadowing is enabled for text Page 2
and auxiliary text Page 2.

1 Inhibit shadowing for auxiliary Hi-Res graphics pages:
When this bit is 1, shadowing is disabled for Hi-Res
graphics pages 1 and 2 (as determined by bits 0 through
3 in this register) in all auxiliary (odd) banks.
Shadowing of Hi-Res graphics pages in the main bank
remains unaffected.

0 When this bit is 0, shadowing is enabled for Hi-Res
graphics pages (as determined by bit 1).

1 Super Hi-Res graphics buffer inhibit: When this bit is
1, shadowing is disabled for the entire 32K video
buffer.

0 When this bit is 0, shadowing is enabled for the Super
Hi-Res graphics buffer.

1 Hi-Res graphics Page 2 inhibit: When this bit is 1,
shadowing is disabled for Hi-Res graphics Page 2 and
auxiliary Hi-Res graphics Page 2. !

0 When this bit is 0, shadowing is enabled for Hi-Res
video Page 2 and auxiliary Hi-Res video Page 2, unless
auxiliary Hi-Res graphics Page 2 shadowing is
prohibited by bit 4 of this register.

1 Hi-Res graphics Page 1 inhibit: When this bit is 1,
shadowing is disabled for Hi-Res graphics Page 1 and
auxiliary Hi-Res graphics Page 1.

0 When this bit is 0, shadowing is enabled for Hi-Res
graphics Page 1 and auxiliary Hi-Res graphics Page 1,
unless auxiliary Hi-Res graphics Page 1 shadowing is
prohibited by bit 4 of this register.

1 Text Page 1 inhibit: When this bit is 1, shadowing is
disabled for text Page 1 and auxiliary text Page 1.

0 When this bit is 0, shadowing is enabled for text Page 1
and auxiliary text Page 1.

Chapter 2 The Core of the Apple IIGS

21

You can turn shadowing on and off for areas within each shadow-enabled 64K bank by
setting the corresponding bit or bits in the Shadow register. You can turn off shadowing
(no banks shadowed) by setting all bits in the Shadow register. When the Shadow register
is cleared on reset, it defaults to shadowing all video areas.

Each bit in the Shadow register is active high, which means that the shadowing of the
selected area is inhibited if the corresponding bit is set. Programs that use the Shadow
register can turn off shadowing in unused video areas by setting the appropriate bits, thus
reclaiming the memory space in the unused video buffers/in Mega II banks $00 and $01.

The Speed register

The Speed register, located at $C036, contains bits that control the speed of operation
and that determine whether a specific area within a bank is shadowed. The Speed register
is cleared on reset or power up, except for bit 6, which on power up is set. Figure 2-6 shows
the format of the Speed register. Table 2-2 contains a description of the bits.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

= Figure 2-6 Speed register at $C036

71654 3]2]1]0

Central processor speed J
Power-on status

Reserved; do not modify

Shadowing enable, all RAM banks

Slot 7 disk motor-on detect —

Slot 6 disk motor-on detect —

Slot 5 disk motor-on detect —

Slot 4 disk motor-on detect J

2 Apple IIGS Hardware Reference

= Table 2-2 Bits in the Speed register

Bit Value Description
T 1 System operating speed. When this bit is 1, the system
operates at 2.8 MHz.
0 When this bit is 0, the system operates at 1.024 MHz (as
in other Apple II computers).
6 1 Power-on status (available only on the 1 MB logic

board): This bit is set to 1 when the system is turned on
using the power switch. A boot initiated by any key
combination will not alter this bit. This is a read-write

bit.
0 n/a-
5 - Reserved; do not modify.
4 1 Bank shadowing bit: This bit determines memory

shadowing in the RAM banks. Shadow register bits 0
through 4 will determine which portion, if any, of the
banks will be shadowed. To enable shadowing in all
RAM banks, $00 through $7F, set this bit to 1.

0 To enable shadowing in banks $00 and $01 only, clear
this bit. For proper operation of the Apple 11GS
operating system, this bit must always be set to 0.

0-3t 1 Disk I motor-on address detectors: To retain Apple II
peripheral compatibility, the motor-on detectors
change the system speed to 1.024 MHz whenever a
Disk II motor-on address is detected.t When the disk
motor-off address is accessed, the system speed
increases to 2.8 MHz again. For example, when bit 1 is
1, the FPI switches to 1.024 MHz when address $COD9 is
accessed, and returns to 2.8 MHz following a $COD8
access. (See list of addresses below.)

Drives designed for the Apple I1GS system should use the speed bit (Speed register bit 7) to change the

processor speed when accessing disks, rather than the disk motor-on detectors (Speed register bits 0

through 3). By using bit 7, you access drives in slots other than slots 4 through 7 by changing the system

speed manually. Be aware that central processor speed changes for drive compatibility may affect

application program timing; avoid using the motor addresses unless they are used in a fashion

consistent with the drive’s central processor speed requirements.

t+ For compatibility with future Apple products, use firmware calls only to manipulate bits 0 to 3 of the
Speed register.

+ Drives designed for previous Apple Il computers will function as Apple 1IGS peripherals only if the

system speed is changed to 1.024 MHz before disk access is attempted.

(Continued)

Chapter 2 The Core of the Apple IIGS 23

!

= Table 2-2 Bits in the Speed register (Continued)

Bit Value Description
0 When this bit is 0, the Disk II motor detectors are
turned off.

Bits 0 through 3 detect the following addresses:

Bit Slot Motor on Motor off
0 4 $COCY $COC8
1 5 $CODY $CODS8
2 6 $COE9 $COES
3 7 $COF9 $COF8

RAM control

The FPI alone controls the high-speed RAM. This high-speed memory consists of a
minimum of 128K of RAM (1 MB in the 1 MB Apple I1GS) on the main logic board and
additional expansion RAM on the extended memory card, for a total of 4.3 MB in the 256K
logic board, and 5 MB in the 1 MB version of the board.

The FPI provides memory refresh for the high-speed RAM, which incorporates internal
refresh-address counters. This refresh scheme frees the address bus so that the FPI can
execute ROM cycles while RAM refresh cycles are occurring, thus allowing full-speed
operation in the ROM. These cycles occur approximately every 3.5 microseconds and
reduce the 2.8-MHz processing speed by approximately 8 percent for programs that run in
RAM. When running at 1.024 MHz, refresh cycles are executed during an unused portion of
the processor cycle and do not affect the processor speed.

I/0 space addresses

The 1/0 space in the Apple IIGS consists of all the addresses from $C000 through $CFFF.
All internal device addresses, register addresses, soft switch addresses, and slot addresses
fall within this 4K address range. Any of these addresses can be accessed through banks
$EO, SE1, $00, and $01. Access from banks $E0 and $E1 is always enabled; access from
banks $00 and $01 is controlled by bit 6 of the Shadow register, and must always be
enabled for correct system operation.

2% Apple IIGs Hardware Reference

M‘ the performance of timing-critical code, you must consider the impact
processor speed changes have on execution speed. The Apple IIGS can operate at 2.8

MHz, but must slow down to 1.024 MHz when accessing certain I/O addresses. These I/O
addresses include 1/0 reads and writes, and instruction reads of firmware at slot addresses
of $C100 through $CFFF. Additionally, all reads and writes to soft switches and slot I/O
devices at addresses $C090 through $COFF also occur at 1.024 MHz.

& Note: In order to guarantee that your code will remain compatible with future Apple 1T
computers, do not develop timing-critical code that will not function at system
speeds greater than 2.8 MHz.

A microprocessor instruction consists of between two and nine individual cycles. For
instructions executed from fast RAM or ROM, only the specific instruction cycles that
read from or write to I/0 addresses will slow the system to 1.024 MHz. All other cycles of
such an instruction will execute as fast cycles. The result is that the majority of instruction
cycles occur at high speed. The few that occur at low speed are of variable length. This
length can, however, be estimated. The following rules provide a simple method of
calculating the minimum and maximum time that an entire instruction will require to
execute:

1. If a single (8-bit) slow I/O read or write cycle is perfectly synchronized, it takes nearly
three fast cycles to complete. A double (16-bit) slow /O read or write cycle takes
nearly 6 fast cycles to complete. Thus, an 8-bit read or write instruction that would
normally take four fast cycles will take at least six fast cycles, an increase of two
cycles. A 16-bit read or write instruction that would normally take five fast cycles will
take at least nine fast cycles, an increase of four cycles.

2. If either a single or double slow cycle is not synchronized, the maximum delay for
synchronization is one extra slow cycle, adding the equivalent of three fast cycles to
the count. Thus, the worst-case 8-bit access becomes 2 + 3 or 5 extra fast cycles, and
the 16-bit worst case becomes 4 + 3 or 7 extra fast cycles.

These rules can be applied to the cycle times for any instruction executing in fast RAM or
ROM to approximate the minimum and maximum times for instructions that reference
1/0 addresses. Remember to allow an additional 10% in total cycle time to account for
RAM refresh delays.

Certain registers internal to the FPI (the DMA register, the Speed register, and the Shadow
register) are read and written at high speed. Similarly, reading the interrupt ROM
addresses ($C071 through $C07F) does not slow the system. In addition, two registers
(the State register and the Slot ROM Select register) that exist in both the FPI and the
Mega II ICs are written at 1.024 MHz and read at 2.8 MHz in the FPI address space.

Chapter 2 The Core of the Apple IIGS 25

N

N\

\\

\
\\

Chapter 3

Memory

This chapter describes the internal memory of the Apple IIGS, and shows
the RAM and ROM memory layout and how the memory is controlled.
There is a memory map for the entire system, and there are individual
maps for special features like standard Apple II compatibility and
memory shadowing.

The memory in the Apple IIGS is divided into several portions. Figure 3-1
is a block diagram showing the different parts of memory in relation to
the rest of the hardware; Figure 3-2 is a memory map showing the
addresses of the different parts of memory. As described in Chapter 2,
the greater part of the memory is controlled by the FPI, while two 64K
banks ($E0 and $E1) are controlled by the Mega II so that the Apple 1IGS
may function like a standard Apple II.

= Figure 3-1 Memory in the Apple IIGS

Slots 1 2 3 4 5 6 7

NES58 Slotmaker
0000
Game
/0 Digital-to-analog
Vewr 11 I converters
e 1 Analog RGB
FPI | Vid video
) ideo
| Vldi‘.) amplifiers
T Mega Il 128K RAM Graphics
| Controller
Buffers{ NTSC
Realtime |] generator
| clock @
| Composite
I video
I
—— - (256K Apple 11GS
I ADB only) [Sound
: GLU }}g%’afg GLU
| Serial |
05C810[|| FpI | | oo : Communications
Controller
| WM ADB 6K
| micro- RAM
| controller
| !
I @ E HHE
I 0000000000 Ensoniq
Serial Serial ; 000000000 ; Retrofit DOC
e L' pona ponB Disk keyboard I
| ort (256K Apple IIGS | | ‘
250K ROM | p = only) Audio
Memory | Apple ©— amplifier Speaker
expansion Desktop External
slot | Bus speaker

28 Apple 1IGs Hardware Reference

Built-in memory

The original Apple 1IGS comes with 256K of main memory mounted on the circuit board,
and the 1 MB Apple I1GS has 1 MB. Additional memory can be added by means of an
optional memory expansion card you can plug into the memory expansion slot, which is
described in the latter part of this chapter.

As you can see by looking at the block diagram in Figure 3-1, memory in the Apple IIGS is
divided into several portions. The original Apple 1IGS uses ten 64K-by—4-bit RAM ICs on
the main logic board. Four RAM ICs make up the 128K controlled by the Mega II, and four
more are the 128K of fast system memory controlled by the FPI. The 1 MB Apple IIGS
varies from this configuration slightly, using eight 1-megabit RAM ICs for fast system
memory. Besides the main memory, there are also two RAM ICs for the 64K of RAM
dedicated to sound generation. The sound RAM is not directly addressable by application
programs; for more information about the sound memory, refer to Chapter 5.

Memory map

The 65C816 microprocessor is capable of addressing up to 16 MB of memory, but only
portions of this memory space are utilized in the Apple 1IGS. Figure 3-2 shows how that
memory space is allocated in the Apple IIGS. A portion of the lower memory space—a
maximum of 5 MB—is available for fast RAM under the control of the FPI. The first 128K is
built into the original Apple IIGS, 1 MB in the 1 MB Apple IIGs; the rest can be added by
means of a memory expansion card.

The 128K of RAM controlled by the Mega IT occupies banks $E0 and $EI1. No further
expansion of this part of memory is possible.

The highest 16 banks are allocated to ROM under the control of the FPI. The top 128K of
ROM is built into the original Apple I1Gs; the uppermost 256K of ROM is built into the 1
MB Apple 1IGS. Additional ROM can be added by means of a memory expansion card.

Chapter 3 Memory

= Figure 3-2 Memory map of the Apple IIGS (Solid lines indicate built-in memory;
dashed lines indicate expansion memory.)
Bank SFF h C Bank SFF
Bank SFE Bank SFE
|
Bank $FD | __ BankSFD |
Bank $FC {____Ba_nkﬁi_FC___ |
| BankStB__ |____Ba_nk$fli_,]
| Bank SFA
F=——m = FastROM — | :
. . (Controlled by FPI) :
: N oA
__________ _] | _BE]_ $_F2_ ——
L Bank $F2 | I Bank $F1 |
————————— — ===
L_ Bank $F1 | C L Bank SF0 _'
_________ - __bankery
I____B.'fl.n5$_F0____| W, . .
: : /{ Bank SE1
Bank SE1 E
ank $ } Slow RAM Bank SE0
Bank SEQ (Controlled by Mega I1) . .
: - (T Rk]
—————————— ﬂ ~N b
| __ Bank$7F L BankSTE
l Bank $7E | | __ Bank 7D |
N B
al
Bk | . -
- : T Banksor
__________ _1 4
[Banksi | | Banksy |
| Bank $10 | Fast RAM | Bank $02 -
Bank $OF (Controlled by FPD) Bank $01
Bank SOE L Bank $00
: : 250K Apple IIGS
Bank $01
Bank $00)
1 MB Apple IGS
30 Apple 1IGS Hardware Reference

Memory bank allocation

The memory in the Apple IIGS is addressed as 64K banks, as shown in Figure 3-2. Bank
numbers are in hexadecimal. The built-in memory banks are shown with solid outlines:
banks $00 and $01, $E0 and $E1, and $FE and S$FF in the 250K Apple 11GS. The parts of the
memory space from bank $02 to bank $7F and from bank $F0 to bank $FD are allocated
for memory expansion; banks $F8 through SFF are reserved for current system and future
expansion of system firmware. Memory spaces from $80 through SEF are not available in
the Apple 1IGs.

The memory bank distribution in the 1 MB Apple IIGS is similar to that of the 250K
system, with a few variations. The built-in banks are banks $00 through $OF, SEO and $E1,
and $FC through $FF. Banks $10 through $7F, and $F0 through SFB in the 1 MB system are
available for memory expansion.

Address wrapping

In general, the 65C816 microprocessor used in the Apple IIGS addresses memory as
continuous across bank boundaries, but there are exceptions. One kind of exception
involves the 65C816's instructions themselves. For data at the highest address in a bank,
the next byte is the lowest one in the next bank, but instructions themselves wrap around
on bank boundaries, rather than advancing to the next bank. That means that the
maximum size of a program segment is normally limited to 64K. For more information
about the 65C816, refer to Chapter 10.

Another exception to the continuity of memory arises from the way certain banks are
used for special purposes. For example, parts of banks $EO and $E1 are set aside as video
display buffers and are not normally used for program code, although the hardware doesn't
prevent such use. The Memory Manager, which is part of the Apple IIGs Toolbox, takes
such restrictions into account. For information about the Memory Manager, refer to the
Apple 1IGS Toolbox Reference.

ROM memory

The two highest banks in the 250K system, and the four highest banks in the 1 MB system,
are used for built-in ROM that contains system programs and part of the Apple IIGS
Toolbox. Additional memory in banks $F0 to SFD ($FB in the 1 MB system) is available
for ROM on a memory expansion card. Of that memory, part is available for application
programs stored as a ROM disk, and part is reserved for future expansion of system
programs. For information about ROM disks, refer to the Apple IIGS ProDOS 16 Reference.

Chapter 3 Memory 31

Bank $00 memory allocation

Memory bank $00 preserves many features found in the 64K of main memory in the
Apple Ile or the Apple Ilc that make it possible to run programs originally written for
those machines or for the Apple II Plus.

Reserved memory pages

Most of bank $00 is available for storing programs and data. However, a few pages of
bank $00 are reserved for the use of the Monitor firmware and the BASIC interpreter. The
reserved pages are described in the following sections.

/N Important The system does not prevent your using these pages, but if you do use
them, you must be careful not to disturb the system data they
contain, or you will cause the system to malfunction. a

& Apple I note: Some of the reserved areas described in the sections that follow are used
only by programs written for models of the Apple II that preceded the Apple IIGs.
Programs written specifically for the Apple 11Gs normally do not deal with hardware
features directly, but rely on routines in the toolbox, as described in the Apple IIGS
Toolbox Reference. Some reserved areas are used by the built-in firmware: Refer to the
Apple 1IGS Firmware Reference.

Direct page: Several of the 65C816 microprocessor’s addressing modes require the use of
addresses in a specified page of bank $00 called the direct page. Like the zero page in a
6502 microprocessor, the direct page is used for indirect addressing.

The direct page works differently in the two microprocessor modes. When the 65C816 is
in emulation mode, the direct page is located at address $0000 in bank $00, like the zero
page in a 6502 microprocessor’s 64K address space. When the 65C816 is in native mode,
the direct page can be located anywhere in bank $00, making it possible for different
programs to have different direct page locations. (For more information about emulation
mode and native mode, see Chapter 10.)

To use indirect addressing in your assembly-language programs, you must store base
addresses in a direct page. At the same time, you must avoid interfering with direct-page
memory used by other programs such as the Monitor program, the BASIC interpreter, and
the disk operating systems. The best way to avoid conflicts is to request your own
direct-page space from the Memory Manager: Refer to the Apple 1IGs Toolbox Reference.

32 Apple IIGS Hardware Reference

The 65C816 stack: The 65C816 microprocessor uses a stack to store subroutine return
addresses in last-in, first-out sequence. Many programs also use the stack for temporary
storage of the registers and for passing parameters to subroutines.

The 65C816 uses the stack two ways—in emulation mode and native mode. In emulation
mode, the stack pointer is 8 bits long, and the stack is located in page 1 (locations $100
through $1FF, hexadecimal) and can hold 256 bytes of information. When you store the
257th byte in the stack, the stack pointer repeats itself, or wraps around, so that the new
byte replaces the first byte stored, which is then lost. This writing over old data is called
stack overflow. The program continues to run normally until the lost information is needed,
whereupon the program may behave unpredictably, or, possibly, terminate
catastrophically.

A Warning The wrapping around of the stack pointer does not occur
consistently; in some addressing modes the stack will continue to
page 2. In either case, a system crash is imminent. a

In native mode, the stack pointer is 16 bits long, and the stack can hold up to 64K of
information at a time. To read more about using the 65C816 stack, see Chapter 10.

The input buffer: The GETLN input routine, which is used by the built-in Monitor
program and Applesoft BASIC interpreter, uses page 2 of bank $00 as its keyboard-input
buffer. The size of this buffer sets the maximum size of input strings. (Note that BASIC
uses only the first 237 bytes, although it permits you to type in 250 characters.) If you
know that you won't be typing any long input strings, you can store temporary data at the
upper end of page 2.

@ Note: Routines that use the input buffer run in emulation mode; programs running in
native mode must first switch to emulation mode to call such routines. Refer to the
Apple IIGS Firmware Reference for more information.

Link-address storage: The Monitor program, ProDOS®, and DOS 3.3 all use the upper
part of page 3 for link addresses or vectors. BASIC programs sometimes need short
assembly-language routines. These routines are usually stored in the lower part of page 3.

Shadowed display spaces: The display buffers in the Apple IIGS are actually located in

banks $E0 and $E1, but programs written for the Apple I Plus, the Apple Ile, and the

Apple Iic put display information into the corresponding locations in bank $00 and

require display shadowing to be on. Figure 3-3 shows the shadowed display spaces. For ;
more information about shadowing, refer to Chapter 2.

Chapter 3 Memory 33

)

& Note: Display buffers in bank $00 are normally used only by programs written for earlier
models of the Apple II, except for text Page 1, which is also used by the Control Panel
desk accessory. Shadowing of the display buffers is enabled by a switch in the Shadow
register, described in Chapter 2.

= Figure 3-3
shadowed memory locations.)
Bank $00

SFFFF

Language-card space
. I/O space

$CO00 f—

56000 f—
Hi-Res graphics Page 2

$4000 §

$2000 b

$0800
$0400
$0000

Hi-Res graphics Page 1

Text Pages 1

Shadowed display spaces in banks $00 and $01 (Shading indicates

Bank $01

Super
| Hi-Res
video

buffer

The primary text and Lo-Res graphics display buffer uses memory locations $0400 through
SO7FF. This 1024-byte area is called text Page 1, and it is not usable for program and data
storage when shadowing is on. There are 64 locations in this area that are not displayed on
the screen; these locations, called screen holes, are reserved for use by the peripheral
cards and the built-in ports. See the section “Peripheral-Card RAM Space,” in Chapter 8,
for the locations of the screen holes.

3

Apple 1IGS Hardware Reference

Text Page 2: The original Apple IIGS doesn't shadow text Page 2. To make it possible
to run Apple II programs that use text Page 2 for their displays, the firmware includes a
desk accessory, Alternate Display Mode, that automatically transfers data from text
Page 2 of bank $00 into text Page 2 of bank $EO, where it can be displayed. Refer to
the Apple 1IGS Firmware Reference for more information. Note that the 1 MB Apple
I1GS has available a Shadow register bit that allows you to shadow Text Page 2. ;

When the primary Hi-Res graphics display buffer, Hi-Res graphics Page 1, is shadowed, it N
uses memory locations $2000 through $3FFF. If your program doesn’t use Hi-Res graphics, :
this area is usable for programs or data.

Hi-Res graphics Page 2 uses memory locations $4000 through $5FFF. Most programs do
not use Hi-Res graphics Page 2, so they can use this area for program or data storage.

The primary Double Hi-Res graphics display buffer, called Double Hi-Res graphics Page 1,
uses memory locations $2000 through $3FFF in both main and auxiliary memory (banks $00
and $01). If your program doesn’t use Hi-Res or Double Hi-Res graphics, this area of
memory is usable for programs or data.

Language-card memory space

& Apple Il note: The language-card space is a carryover from earlier models of the Apple II
and is normally used only by programs written for those machines and running in
emulation mode. Like the bank $00 shadowing of the display buffers, the peculiar
features of the language-card space are enabled by a switch in the Shadow register,
which is described in Chapter 2.

& Memory banks: The language-card space is a feature both of bank $00 and of bank
$01. Refer to the section “Bank $01 (Auxiliary Memory),” later in this chapter, for more
information.

When the language-card feature is enabled, the memory address space from $D000 through ‘
S$FFFF is doubly allocated: It is used for both ROM and RAM. The 12K of ROM in this ‘
address space contains the Monitor program and the Applesoft BASIC interpreter.

Alternatively, there are 16K of RAM in this space. The RAM is normally used by the disk

operating system.

You may be wondering why this part of memory has such a split personality. Some of the
reasons are historical: The Apple IIGS is able to run software written for a standard

Apple 11 because it uses this part of memory in the same way a standard Apple II does. It's
convenient to have the Applesoft BASIC interpreter in ROM, but the Apple IIGS is also
able to use that address space for other things when Applesoft is not needed.

You may also be wondering how 16K of RAM are mapped into only 12K of address space.
The usual answer is that it's done with mirrors, and that isn’t a bad analogy: The 4K address
space from $D000 through SDFFF is used twice.

Chapter 3 Memory 35

Switching different blocks of memory into the same address space is called bank
switching. There are actually two examples of bank switching going on here: First, the
entire address space from $D000 through $FFFF is switched between ROM and RAM, and
second, the address space from $D000 to $DFFF is switched between two different
blocks of RAM. If the language card is not enabled, the first of these blocks of RAM,
block 1, occupies address space from $C000 to $CFFF, as shown in Figure 3-4. (Note that
the banks involved here are not the same as the 64K memory banks.)

= Figure 3-4 Language-card memory map

RAM in $Cxxx space RAM mapped as language card
SFFFF SFFFF
$F000 $F000
$E000 $E000
Block 2
$D000 $D000
[
$C000 §C000 b ———

Setting language-card bank switches: You switch banks in the language-card space in
the same way you switch other functions in a standard Apple II: by using soft switches.
Read operations to the soft-switch locations do three things: select either RAM or ROM in
this memory space, enable or inhibit writing to the RAM, and select the first or second 4K
bank of RAM in the address space $D000 to $DFFF.

A Warning Do not use these switches without careful planning. Careless switching
between RAM and ROM is almost certain to have catastrophic effects
On your program. a

Table 3-1 shows the addresses of the soft switches for enabling all combinations of
reading and writing in this memory space. All the hexadecimal values of the addresses are
of the form $C08x. Notice that several addresses perform the same function: This is
because the functions are activated by single address bits. For example, any address of
the form $C08x with a 1 in the low-order bit enables the RAM for writing. Similarly, bit 3
of the address selects which 4K block of RAM to use for the address space $D000 to
$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3 is 1, the second bank is used.

36 Apple 11Gs Hardware Reference

When RAM is not enabled for reading, the ROM in this address space is enabled. Even
when RAM is not enabled for reading, it can still be written to if it is write-enabled.

= Table 3-1 Language-card bank-select switches

Name Action Location Function

R $C080 Read this location to read RAM, write-
protect RAM, and use $D000 bank 2.

ROMIN RR $C081 Read this location twice to read ROM,
write-enable RAM, and use $D000
bank 2.
R $C082 Read this location to read ROM, write-
protect RAM, and use $D000 bank 2.
LCBANK?2 RR $C083 Read this location twice to read RAM,
write-enable RAM, and use $D000
bank 2.
R $C088 Read this location to read RAM, write-
protect RAM, and use $D000 bank 1.
RR $C089 Read this location twice to read ROM,
write-enable RAM, and use $D000
bank 1.
R $CO8A Read this location to read ROM, write-
protect RAM, and use $D000 bank 1.
RR $C08B Read this switch twice to read RAM,
write-enable RAM, and use $D000
bank 1.
RDLCBNK2 R7 $C011 Read this location and test bit 7 for
switch status: $D000 bank 2 (1) or
bank 1 (0).
RDLCRAM R7 $C012 Read this location and test bit 7 for
switch status: RAM (1) or ROM (0).
SETSTDZP W $C008 Write this location to use main bank,
page 0 and page 1.
SETALTZP W $C009 Write this location to use auxiliary
bank, page 0 and page 1.
RDALTZP R7 $C016 Read this location and test bit 7 for

switch status: auxiliary (1) or main (0)
bank.

Chapter 3 Memory 37

O

When you turn power on or reset the Apple IIGS, the bank switches are initialized for
reading from the ROM and writing to the RAM, using the second bank of RAM. Note that
this is different from the reset on the Apple IT Plus, which doesn’t affect the bank-
switched memory (the language card). On the Apple IIGS, you can't use the reset key
sequence to return control to a program in bank-switched memory, as you can on the
Apple II Plus.

& Reading and writing to RAM banks: You can't read one RAM bank and write to the
other; if you select either RAM bank for reading, you get that one for writing as well.

& Reading RAM and ROM: You can’t read from ROM in part of the bank-switched
memory and read from RAM in the rest. Specifically, you can't read the Monitor
program in ROM while reading bank-switched RAM. If you want to use the Monitor
firmware with a program in bank-switched RAM, copy the Monitor program from ROM
(locations $F800 through $FFFF) into bank-switched RAM. You can't do this from
Pascal or ProDOS.

To see how to use these switches, look at the following section of an assembly-language
program:

LDA $C083 *SELECT 2ND 4K BANK & READ/WRITE
LDA $C083 *BY TWO CONSECUTIVE READS

LDA #$DO *SET UP...

STA BEGIN * .. .NEW. ..

LDA #SFF *, . .MAIN-MEMORY. ..
STA END *,..POINTERS...

JSR YOURPRG *...FOR 12K BANK

LDA $CO8B *SELECT 1ST 4K BANK

JSR YOURPRG *USE ABOVE POINTERS

LDA $C088 *SELECT 1ST BANK & WRITE PROTECT
LDA #$80

INC SUM

JSR YOURSUB

LDA $C080 *SELECT 2ND BANK & WRITE PROTECT
INC SUM

LDA #PAT12K

JSR YOURSUB

LDA S$SCO8B *SELECT 1ST BANK & READ/WRITE
LDA $CO08B *BY TWO CONSECUTIVE READS

INC NUM *FLAG RAM IN READ/WRITE

INC SUM

The LDA instruction, which performs a read operation to the specified memory location,
is used for setting the soft switches. The unusual sequence of two consecutive LDA
instructions performs the two consecutive reads that write-enable this area of RAM; in this
case, the data that are read are not used.

38 Apple 1IGS Hardware Reference

Reading bank switches: You can find out which language-card bank is currently
switched in by reading the soft switch at $C011. You can find out whether the language
card or ROM is switched in by reading $C012. The only way that you can find out whether
or not the language-card RAM is write-enabled is by trying to write some data to the card’s
RAM space.

The State register

The State register is a read/write register containing eight commonly used standard
Apple 11 soft switches. Compared to the use of separate soft switches, the single-byte
format of the State register simplifies the process of interrupt handling. Reading and
storing this byte before executing interrupt routines allows you to restore the system soft
switches to the previous state in minimum time after returning from the interrupt routine.
Write operations to the State register will slow the system momentarily. (See Figure 3-5
and Table 3-2.)

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

= Figure 3-5 State register at $C068

71615143 2]1]0

ALTZP —J

PAGE 2

RAMRD

RAMWRT —

RDROM —

LCBNK2 —

ROMBANK —

INTCXROM —

Chapter 3 Memory 39

n Table 3-2

Bits in the State register

Bit

Description

ALTZP: If this bit is 1, then bank-switched
memory, stack, and direct page are in main
memory.

If this bit is 0, then bank-switched memory,
stack, and direct page are in auxiliary memory.

PAGEZ2: If this bit is 1, text Page 2 is selected.
If this bit is 0, text Page 1 is selected.

RAMRD: If this bit is 1, auxiliary RAM bank is
read-enabled.

If this bit is 0, main RAM bank is read-enabled.

RAMWRT: If this bit is 1, auxiliary RAM bank is
write-enabled.

If this bit is 0, main RAM bank is write-enabled.

RDROM: If this bit is 1, the selected language-
card ROM is read-enabled.

If this bit is 0, the selected language-card RAM
bank is read-enabled.

LCBNK2: If this bit is 1, language-card RAM bank
1 is selected.

If this bit is 0, language-card RAM bank 2 is
selected.

ROMBANK: The ROM bank select switch must
always be 0. To maintain system integrity, do
not modify this bit.

INTCXROM: If this bit is 1, the internal ROM at
$Cx00 is selected.

If this bit is 0, the peripheral-card ROM at Cx00 is
selected.

40 Apple IIGS Hardware Reference

Bank $01 (auxiliary memory)

& Apple Il note: The following sections describe the operation of the auxiliary memory
(bank $01) as it applies to programs originally written for the Apple Ilc or for 128K
versions of the Apple Ile. Programs written specifically for the Apple 11GS don't
normally use bank $01 in this fashion, but use the Memory Manager to obtain whatever
memory space they need, without specifying whether it is in bank $00, bank $01, or
expansion memory in higher banks.

When display shadowing is on, some of the display modes use memory in auxiliary
memory (bank $01). Specifically, half of the 80-column text display page is there, along
with half of each of the Double Hi-Res graphics display pages and all of the Super Hi-Res
display buffer, if those displays are shadowed. For descriptions and memory maps of
those display pages, refer to Chapter 4. Apple Il programs that use one of those display
modes cannot use the corresponding pages of bank $01 for program and data storage.

A Warning Do not attempt to switch in the auxiliary memory from a BASIC
program. The BASIC interpreter uses several areas in main RAM,
including the stack and the direct page. If you switch to alternate
memory in these areas, the BASIC interpreter fails and you must reset
the system and start over. a

As you can see by studying the memory map in Figure 3-0, the auxiliary memory is divided
into two large sections and one small one. The largest section is switched into the memory
address space from 512 to 49151 ($0200 through $BFFF). This space includes the display
buffer pages: Space in auxiliary memory is used for one-half of the 80-column text display
and the Double Hi-Res graphics display. You can switch to the auxiliary memory for this
entire memory space, or you can switch just the display pages: See the section “Bank
Switching for Auxiliary Memory,” later in this chapter.

/N Important A program that uses auxiliary memory only for the 80-column display
can write into the display page in auxiliary memory by using the
SET80COL and TXTPAGE?2 soft switches described in the section
“Display Mode Switching” in Chapter 4.

Chapter 3 Memory 41

The other large section of auxiliary memory is the language-card space, which is switched
into the memory address space from 52K to 64K ($D000 through $FFFF). This memory
space and the switches that control it are described earlier in this chapter in the section
“Language-Card Memory Space.” The language-card soft switches have the same effect on
the auxiliary RAM that they do on the main RAM: The language-card bank switching is
independent of the auxiliary RAM switching.

= Figure 3-6 Memory map of main and auxiliary memory

Main 64K Auxillary 64K

(Bank $00) (Bank $01)
SFFFF SFFFF

Language-card space
1 $D000

SDO0 I/O space
$C000 $C000
$0000 — Stack and direct page ————— $0000

42 Apple 11GS Hardware Reference

Note: The soft switches for the language-card memory, described in the previous
section, do not change when you switch to auxiliary RAM. In particular, if ROM is
enabled in the language-card space before you switch to auxiliary memory, the ROM
will still be enabled after you switch. Any time you switch the language-card section of
auxiliary memory in and out, you must also make sure that the bank switches are set

properly.

When you switch in the auxiliary RAM in the language-card space, you also switch in the
first two pages, from 0 to 511 ($0000 through $01FF). This part of memory contains the
direct page and the 65C816 stack when running in 6502 emulation mode. The stack and
direct page are switched this way so that standard Apple I system software running in
the language-card space can maintain its own stack and direct page while it manipulates
the 48K address space (from $0200 to $BFFF) in either main memory or auxiliary memory.

Bank switching for auxiliary memory

Switching the 48K section of memory is performed by two soft switches: The switches
named RDMAINRAM and RDCARDRAM select main or auxiliary memory for reading, and
the switches named WRMAINRAM and WRCARDRAM select main or auxiliary memory for
writing. As shown in Table 3-3, there are two switches for each function: one to select main
memory, and the other to select auxiliary memory. Enabling the read and write functions
independently makes it possible for a program whose instructions are being fetched from
one memory space to store data into the other memory space.

A Warning Do not use these switches without careful planning. Careless switching
between main and auxiliary memories is almost certain to have
catastrophic effects on the operation of your program. a

Writing to the soft switch at location $C003 turns RDCARDRAM on and enables auxiliary
memory for reading; writing to location $C002 turns RDMAINRAM on and enables main
memory for reading. Writing to the soft switch at location $C005 turns WRCARDRAM on
and enables the auxiliary memory for writing; writing to location $C004 turns
WRMAINRAM on and enables main memory for writing. By setting these switches
independently, you can use any of the four combinations of reading and writing in main or
auxiliary memory.

You can use auxiliary memory corresponding to text Page 1 and Hi-Res graphics Page 1 as
part of the address space from $0200 to $BFFF by using RAM read and RAM write soft
switches as described above. You can also control these areas in auxiliary RAM separately
by using the switches named SET80COL, TXTPAGE2, and HIRES.

Chapter 3 Memory 43

|

s Table 3-3

Auxiliary-memory select switches

Location

Name Function Hex Dec Notes

RDCARDRAM Read auxiliary memory $C003 49155 Write

RDMAINRAM Read main memory $C002 49154 Write

RDRAMRD Read switch status $C013 49171 Read and test bit 7
(1=auxiliary, 0=main)

WRCARDRAM ~ Write auxiliary memory $C005 49157 Write

WRMAINRAM ~ Write main memory $C004 49156 Write

RDRAMWRT Read switch status $C014 49172 Read and test bit 7
(1=auxiliary, 0=main)

SET80COL Access display page $C001 49153 Write

CLR80COL Use RAM switches ($§C002-5,13,14) $C000 49152 Write

RD80COL Read switch status $C018 49176 Read and test bit 7
(1=80-column access on,
0=80-column access off)

TXTPAGE2 Text Page 2 on (auxiliary memory)* $C055 49237 Read or write

TXTPAGE1 Text Page 1 on (main memory)* $C054 49236 Read or write

RDPAGE?2 Read switch status $CO1C 49180 Read and test bit 7
(1=Page 2, 0=Page 1)

HIRES Access Hi-Res pagest $CO57 49239 Read or write

LORES Use RAM switches ($C002-5,13,14)f $C056 49238 Read or write

RDHIRES Read switch status $COID 49181 Read and test bit 7
(1=HIRES on, 0=off)

SETALTZP Auxiliary stack and direct page $C009 49161 Write

SETSTDZP Main stack and direct page $C0O08 49160 Write

RDALTZP Read switch status $C016 49174 Read and test bit 7

(1=auxiliary, 0=main)

* When SET80COL is enabled, TXTPAGE2 and TXTPAGEL select main or auxiliary display memory.
+ When SETS0COL is enabled, HIRES and LORES enable you to use TXTPAGE2 and TXTPAGE! to switch

between the Hi-Res Page 1 area in main memory or auxiliary memory.

As shown in Table 3-3, the SET80COL switch functions as an enabling switch: With it on,
you can select main memory or auxiliary memory by writing to either TXTPAGEL or
TXTPAGE2. With the HIRES switch off, the memory space switched by TXTPAGEZ is text
Page 1 (80400 to $07FF); with HIRES on, TXTPAGE2 switches both text Page 1 and Hi-Res
graphics Page 1 (52000 to $3FFF).

+H Apple 11GS Hardware Reference

If you are using both the auxiliary RAM control switches (SET80COL, CLR80COL,
TXTPAGEL, TXTPAGE2, and HIRES) and the auxiliary display page control switches
(RDMAINRAM, RDCARDRAM, WRMAINRAM, and WRCARDRAM), the display page
control switches take priority. That is, if CLRBOCOL is on, the RAM read and write
switches toggle the entire auxiliary and main memory space from $0200 to $BFFF.

If SET80COL is on, the RAM switches have no effect on the display page; if SETSOCOL is
on and LORES is on, the TXTPAGE! and TXTPAGE2 switches control text Page 1,
regardless of the settings of the RAM read and write switches. Likewise, if SET80COL and
HIRES are both on, TXTPAGE1 and TXTPAGE2 control both text Page 1 and Hi-Res
graphics Page 1, again regardless of the RAM read and RAM write switches.

A single soft switch named ALTZP (for alternate zero page) switches the bank-switched
memory and the associated stack and direct-page area between main and auxiliary
memory. As shown in Table 3-3, writing to location $C009 turns ALTZP on and selects
auxiliary memory stack and direct page; writing to the soft switch at location $C008 turns
ALTZP off and selects main memory stack and direct page for both reading and writing,

There is a third soft switch (RDRAMRD and RDRAMWRT) associated with each pair of
auxiliary memory switches listed above. The high-order bits of the byte you read at this
location tell you the setting of the associated soft switches. For example, the byte you
read at location $C013 has its high bit set to 1 if the auxiliary memory is read-enabled, or
to 0 if the 48K block of main memory is read-enabled.

& Sharing memory: In order to have enough memory locations for all the soft switches
and to remain compatible with the Apple I and Apple II Plus, the soft switches listed
in Table 3-3 share their memory locations with the keyboard functions listed in
Table 6-2. The read or other operations shown in Table 3-3 for controlling the auxiliary
memory are just the ones that are not used for reading the keyboard and clearing the
strobe.

Banks SE0 and SE1

Banks $EO and $E1 are the memory banks controlled by the Mega II. These banks have
special characteristics that make it appropriate to use them in special ways. First, they
contain the display buffers, so they have to run at the standard 1.024-MHz speed. Second,
because these banks are broken up by the special allocations shown in Figure 3-7, they are
the logical place for working storage used by the toolbox and other firmware programs.
Using banks $EO0 and $E1 for such purposes leaves all the higher-speed memory in the low-
numbered banks for application programs and data.

Chapter 3 Memory

45

& Note: In banks $E0 and $E1, language-card mapping, 1/O space, and display buffers
are always active.

= Figure 3-7 Memory map of banks $E0 and SE1

Bank SEO Bank $E1
SFFFF
Language-card space
$E000
I/O space

$C000

Applications,

by calls to the
$A000 Memory Manager h

Super Hi-Res

$6000 | video buffer

Hi-Res Page 2

—— (Double Hi-Res graphics Page 2) ——

$4000

Hi-Res Page 1

—— (Double Hi-Res graphics Page 1) ——
J
$2000 —— Reserved ————
Text Pages 1 & 2
$0000 Reserved
The display buffers

The display buffers are permanently assigned to locations in banks $E0 and SE1 because
they are tied directly to the hardware—the Mega I IC—that reads the data stored there
and generates the display signals. Display-memory shadowing makes it possible to run old-
style Apple II programs that store display data in banks $00 and $01, as described earlier
in this chapter in the section “Shadowed Display Spaces,” and in Chapter 2.

The primary text and Lo-Res graphics display buffers occupy memory locations $0400
through $07FF in banks $E0 and $E1. The 1024-byte area in bank $EO is text Page 1, the
display buffer for 40-column text mode. The 80-column text display uses text Page 1
locations in both bank $E0 and bank $E1. The Control Panel and other firmware programs
use these display buffers, so applications must not use them for program or data storage.

46 Apple 11GS Hardware Reference

Text Page 2, the alternate text and Lo-Res graphics display buffer, occupies memory
locations $0800 through SOBFF. Most programs do not use text Page 2 for displays, and
the original Apple IIGS doesn’t shadow it. The 1 MB Apple I1GS has a bit in the Shadow
register that allows you to enable shadowing of text Page 2.

There are two Hi-Res graphics buffers, each of which requires 8192 bytes (8K) of memory.
Hi-Res graphics Page 1 occupies memory locations $2000 through $3FFF in bank $EO. Hi-
Res graphics Page 2 occupies memory locations $4000 through $SFFF in bank $EO.

The Double Hi-Res graphics buffers require a total of 16384 bytes each, 8192 in each bank.
Double Hi-Res graphics Page 1 occupies memory locations $2000 through $3FFF in banks
$E0 and $E1. Double Hi-Res graphics Page 2 occupies memory locations $4000 through
$SFFF in banks $E0 and $SE1.

The Super Hi-Res graphics display buffer, with its associated palette and scan-line control
data storage, occupies 32K of memory at locations $2000 through $9FFF in bank $E1.
Note that, unlike the other Hi-Res graphics displays, it doesn’t use any space in bank $EO.

In principle, programs that don't use specific displays can use the corresponding display
buffers for data storage. In practice, programs call on the Memory Manager to allocate
space for data storage, and the Memory Manager keeps track of which display spaces are
available. If you try to load your programs and data directly into display memory in banks
$E0 and S$E1, you risk interference from desk accessories or other programs that may be
resident in memory along with your programs.

Firmware workspace

As described in the previous section, banks SE0 and $E1 are always broken up by display
buffers, so they are the logical place for working storage used by the toolbox and other
system programs. Figure 3-7 shows the memory areas reserved for those programs.
Several different system programs use RAM space in banks $E0 and $E1, including

m the Monitor program

m desk accessories

m the Memory Manager

m the Tool Locator

m the Apple Desktop Bus tool set

m the AppleTalk driver

In addition, portions of banks $E0 and $E1 are reserved for future use. For specific uses
of these programs and utilities, refer to the Apple IIGS Firmware Reference.

Chapter 3 Memory

A

47

A Warning Several of the built-in programs use RAM areas in banks $E0 and SE1.
To avoid conflicts with those programs, applications must not use
these areas; instead, applications should request memory from the
Memory Manager. Refer to the Apple IIGS Toolbox Reference for
information about the Memory Manager. a

Apple I program memory use

Earlier models of the Apple IT use a microprocessor, the 6502, that can address only 65536
bytes (64K) of memory. The Apple Ile and the Apple Ilc double this, to 128K, by
switching to an auxiliary 64K bank. In order for programs written for these machines to run
on an Apple IIGS, all of the Apple II features must be present in the part of memory that
corresponds to main and auxiliary memory—banks $00 and $01. This section describes
those features.

Banks $00 and $01

For standard Apple II programs, banks $00 and $01 take on the features of the main and
auxiliary banks. With the 65C816 microprocessor running in emulation mode and
shadowing set appropriately, all of the standard features are present, including

m direct (zero) page, from $0000 to SOOFF of bank $00
m stack, from $0100 to SOIFF of bank $00
m text Page 1, from $0400 to $O7FF of both banks

m text Page 2, from $0800 to $OBFF of both banks (available in the 1 MB Apple 1IGS
only)

m Hi-Res graphics Page 1, from $2000 to $3FFF of bank $00

m Hi-Res graphics Page 2, from $4000 to $5FFF of bank $00

m Double Hi-Res graphics Page 1, from $2000 to $3FFF of both banks
m Double Hi-Res graphics Page 2, from $4000 to $5FFF of both banks
m [/O space, from $C000 to SCFFF of either bank

m language-card space, from $D000 to SFFFF of both banks

Figure 3-3 is a memory map of banks $00 and $01 showing these features.

48 Apple 1IGS Hardware Reference

Shadowing

The display buffers in the Apple 11Gs are located in banks $E0 and SE1, as described earlier
in this chapter. For compatibility with standard Apple II programs, shadowing must be
switched on for the display buffers needed by those programs. For more information
about shadowing, refer to Chapter 2 and to the section “Shadowed Display Spaces” earlier
in this chapter.

Screen holes

When shadowing is on for text Page 1, programs and peripheral cards that use the text
Page 1 locations known as the screen holes run normally. For more information about the
screen holes, refer to the section “Peripheral-Card RAM Space” in Chapter 8.

Memory expansion

The original Apple 11GS has 256K of RAM and 128K of ROM built in, and the 1 MB Apple
11GS has 1 MB RAM and 256K of ROM. This memory can be expanded to a total of 5 MB of
RAM (4 MB RAM on a memory expansion card), and 1 MB total ROM (768K ROM on a
memory expansion card). Memory expansion up to 8 MB of RAM is possible by using the
memory expansion slot, but complications requiring memory support logic keep this
expansion from being practical. The hardware and firmware in the Apple IIGs are designed
to support only a 5 MB maximum memory space. Addresses above 8 MB are not available
to applications programs.

The memory expansion slot

The extended memory-card slot enables you to expand the memory of your Apple IIGS by
adding a memory card holding up to 4 MB of RAM and 786K of ROM memory. The slot
supports additional memory only and is not to be used for any other purpose. RAM cards
of 1 MB or 4 MB can be constructed by using 256K rows or 1 MB rows of RAM ICs.

Chapter 3 Memory 49

|

Memory expansion signals

The memory expansion slot provides a group of signals to support dynamic RAM and
additional general purpose signals to support ROM decoding and selection.

Figure 3-8 shows these signals available at the pins of the memory expansion slot. Table 3-4
describes each of the signals.

= Figure 3-8 Memory expansion slot

DO C C GND
+5V C : +35V
GND : . /CROMSEL
/CSEL C C éROWl
MSIZE C ‘ CROWO
D6 . C /CCAS
D4 C C D7
D5 . C FRA1
02 C C FRA2
ABORT C C FRAO
D3 C C FR/W
GND C +5V -
/CRAS -_@C . FRA7
D1 : C FRAS
Al0 C C FRA4
All . C FRA3
Al2 C C FRAG
Al3 . D2
Al4 C Oé FRA8
AlS C C FRA9
+5V : : +5V
GND GND
__@ ®__

50 Apple IIGs Hardware Reference

s Table 3-4

Memory-card interface signals

Pin Signal Description
FRA0-9 10 bits of multiplexed RAM address for RAM cycles—
the 10 least significant bits of the ROM address
12 FR/W Write enable to RAMs; R/W from microprocessor or
DMA
17 /CCAS RAM column address strobe
18-19 CROW0-1 2 bits select one of four RAM rows
20 /CROMSEL Card ROM select; low for accesses to banks $FO-$FD
26 /CSEL Card data buffer direction control; signal goes high
when reading card data
27 MSIZE Output from card; indicates RAM row size
D0-D7 8 bits of bidirectional data—microprocessor data bus
31 22CLK Microprocessor clock; rising edge indicates valid bank
address on D0-D7
A10-15 The 6 high-order address bits; used to decode ROM
address
32 ABORT Connects to 65C816 ABORT pin
35 /CRAS RAM row address strobe
+5V +5 volts £ 5 percent; 600 mA maximum
Extended RAM

Using dynamic RAM ICs available when the Apple IIGs was introduced, up to 4 MB of RAM
can be installed in the extended memory card. That much memory corresponds to 64
banks of 64K each. The memory on the card is organized as 4 rows of 8 ICs each. With 256-
kilobit-by-1-bit RAMs, each row would hold 256K for a total of 1 MB; with 1 megabit by 1
bit RAMs, each row would hold 1 MB for a total of 4 MB.

While the memory expansion slot has sufficient address lines available to decode
addresses up to 8 MB, memory expansion cards of greater than 4 MB are not
recommended. This is because memory expansion locations beyond 4 MB cannot be
accessed via direct memory access (DMA), and also must provide on-board memory
refresh support circuitry for the additional memory chips.

To control and select individual rows of RAM, the FPI provides /CRAS (card row address
strobe), /CCAS (card column address strobe), CROWO0 (card row select 0), and CROW1
(card row select 1) signals. Signals /CRAS and /CCAS are the basic memory timing signals

Chapter 3 Memory 51

y

common to most dynamic RAMs. Signals CROW0 and CROW1 are row selects that, when
taken as a pair, indicate the row number to be accessed. Typically, CROW0 and CROW1
are used as the select signals for a dual 1-of-4 decoder (74F139 or equivalent) that

demultiplexes /CRAS and /CCAS into a separate /RAS and /CAS for each 8-chip segment.

Extended RAM mapping

Figure 3-9 depicts a 1 MB extended RAM card using four rows of 256K per row, totaling 1
MB. The RAM banks above bank $11 are ghosts (repeated images) of the RAM in banks $2
through $11. A partially populated card causes holes in the memory map unless there is an
option on the card to alter the address decoding. Therefore, contiguous memory for
banks $2 through $11 is available only for 250K, 512K, and 1 MB expansion cards used with
the 250K Apple I1GS. Memory expansion cards using 256K, 512K, 768K, and 1024K may be
used with the 1 MB system.

The MSIZE signal: A signal on the memory expansion slot, MSIZE, flags the type of
memory chips being used on the memory expansion card. If the MSIZE pin is not
connected (when using 256-kilobit RAMs), the FPI multiplexes 18 address bits onto RAQ
through RA8 and generates the CROWO0 through CROW1 row selects for rows of 256K. If the
MSIZE pin is tied to ground (for 1-megabit RAMs), the FPI multiplexes 20 address bits
onto RAO through RA9 and generates the CROW(and CROW1 row selects for rows of 1 MB.

Ghost addresses: A 1 MB expansion card is enabled for accesses in banks $2 through $80
in the 256K system, and banks $10 through $80 in the 1 MB system. The card provides only
1 MB of actual RAM (banks $2 through $11 in the 250K system, and banks $10 through $19
in the 1 MB system). CROW 0 and CROW1 individually select four rows of RAMs on the
card. For a 1 MB card with 250K rows (MSIZE =1), the selected RAM row number is given
by the bank number modulo 4. For banks $00 and $01 (banks $00 through $OF in the 1 MB
Apple TIGs system), the extended memory card is not accessed. This method of card and
row selection causes multiple images or ghosts of the RAM areas on the card; whenever
accessing addresses beyond the RAM expansion-card limit (hexadecimal address $FFFFF
with a 1 MB card, and $3FFFFF with a 4 MB card), locations in a corresponding low bank
are accessed.

Extended ROM

Additional ROM space (up to 890K in the 256K Apple 1IGS, and up to 786K in the 1MB
Apple 1IGS) is available in banks $F0 through $FD ($F0 through $FB on the 1MB logic
board). To obtain this additional space, an additional bank-address latch-decoder is
required on the memory card. The FPI provides a signal (CROMSEL) that selects one bank;
however, the card must provide the additional decoding to select individual ROMs within
the selected bank.

52 Apple 1IGs Hardware Reference

= Figure 3-9 Extended RAM mapping

Memory bank mapping of a Memory bank mapping of a
1 MB expansion card in a 1 MB 1 MB expansion card in a 256K
Apple IIGS system Apple IIGS system
P
Bank $0 Main board
$1 RAM Ghost addresses:

| 52 §12,$22,$32,842,$52,862,872
| $3 §13,523,$33,843.853,963,573
f 54 $14,924.834,844,854.864,874
| $5
| 56
E Main board — 5
| RAM 8 Expansion -
[$9 card RAM
f SA
$ $B
| sC
[$1E $2E $3E $4E $5E SO $7E
! . Ghost addresses: S1F,S2F $3F, $4F S5F,SGF $7F

$20’ $30’ $40Y $50Y $60Y $70 $20,$30,$40,$50,$60,$70

$21’ $31Y $41Y $51Y $61, $71 $21,$31,$41,$51,$61,$71

$22, 832, $42, 852, 862, $72

Expansion —
card RAM
$2D,$3D,$4D,55D,$6D
] | S2E $3E S4E,$5E SOE
~ L | 2 $3F $4F $5F S6F

Chapter 3 Memory 53

Address multiplexing

The FPI multiplexes the RAM addresses onto either eight, nine, or ten RAM address lines to
provide support for RAM with 64-kilobit, 256-kilobit, or 1-megabit RAM ICs. On the 256K
Apple TIGs, the main logic board RAMs (banks $00 and $01) are 64-kilobit chips, requiring
eight address lines. On the 1 MB Apple I1GS, the main logic board RAMs (banks $00
through $OF) are 1-megabit chips requiring ten address lines. The RAM expansion slot can
support cards using 256-kilobit-by-1-bit, 256-kilobit-by—4-bit, 1-megabit-by-1-bit, or
1-megabit-by—4-bit RAMs. The expansion-card manufacturer indicates word size of the
RAMs on the memory card by the MSIZE signal from the card. (See “The MSIZE Signal,”
earlier in this chapter.)

5 Apple IIGS Hardware Reference

Chapter 4 The Video Displays

The Apple 11GS can display several video modes. These include display
modes that are compatible with the rest of the Apple II family (but with
some enhancements to these existing modes) and some completely new
display modes. These new video modes provide higher resolution,
greater color flexibility, and greater programming ease than was
previously available in the Apple II product line. This chapter describes

m enhancements to the standard Apple II video modes

m new video features including the new video display modes

55

Apple IIGS display features

The Apple IIGS brings new features to the existing Apple II video modes. These include
m selectable screen border color

m selectable background color

m selectable text color

m selectable color or black-and-white composite video

These enhancements are described in this chapter. The new graphics modes—Super
Hi-Res graphics and Color Fill mode—are also described in this chapter.

Video from the Mega II IC

The Mega 11 generates all video information in standard Apple IT video modes. The Mega
IT outputs a 4-bit linear-weighted binary code, which represents one of the 16 possible
standard Apple II colors. This digital value is input into the Video Graphics Controller
(VGC) and is used as a look-up address for an equivalent 12-bit resolution RGB color
output value.

A digital-to-analog converter changes the 12-bit color code into three analog RGB video
signals. The RGB output signals drive the video amplifiers and the NTSC video generator
chip. The output of the video amplifier boosts the the RGB signals, while the NTSC chip
mixes the RGB and sync signals, resulting in a composite video signal.

The Video Graphics Controller

The Video Graphics Controller (VGC) custom IC is responsible for generating all video
output. The VGC provides these functions:

m takes standard Apple I video information from the Mega II and generates the video
output

m adds enhancements to existing Apple II video modes
= supports the new video modes

m provides interrupt handling for two interrupt sources

56 Apple TIGS Hardware Reference

= Figure 4-1

The VGC generates all video output in all video modes, whereas the Mega II is responsible
for maintaining the video RAM. All write operations to the video display buffers in bank

SE0 and bank $E1 are done via the Mega II. Figure 4-1 shows the relationships of the VGC,
Mega II, main RAM, and auxiliary RAM.

Video components in the Apple 1IGS
Slots 1 2 3 4 5 0 7

o I=
‘
5
: 3

j I

Slotmaker E g E |

LU A AU U,

65C816 ||

Digital-to-analog
converters
Analog RGB
. video
| — o s
l 1 ? ampliﬁers 0000000
T Mega II 128K RAM Graphics
| Controller
Buffers | NTSC
I Real-time generator
| clock
| Composite
| video
|
I
—— (250K Apple 1IGS
ADB only? —| Sound
GLU Retrofit GLU
|| Serial |
FPI Communications
128K or Controller WM
1 MB RAM : ADB 64K
I micro- RAM
controller
E i
Serial Serial ;ooooooooooooooooooo; Retrofit E%Sgréiq
128K or portA portB Disk an r()keybozlrd i |
Memory Apple ' | amplifier Speaker
expansion Desktop External
slot Bus speaker

Chapter 4 The Video Displays 57

Y

VGC interrupts

Video display in the Apple IIGS is enhanced by VGC-generated interrupts. The VGC
generates two internal interrupts: the one-second interrupt and the scan-line interrupt.

A 1-Hz input signal from the real-time clock (RTC) chip sets the one-second interrupt
status bit. The scan-line interrupt occurs at the beginning of a video display scan line that
has the generate-interrupt bit set in the corresponding scan-line control byte. Scan-line
interrupts are generated when the computer is operating in the Super Hi-Res video
graphics modes only, and are not available in other video modes.

Figure 4-2 depicts the video screen, consisting of the text display area and the display
border. The scan-line interrupt occurs at the beginning of the scan line, which is defined as
the beginning of the right-hand border area.

= Figure 4-2 Scan-line interrupt

Scan-line interrupt occurs
here for each scan line

______________________________ First scan line begins here

And ends here

Text display area

Border area

T
Video display screen

58 Apple 1IGS Hardware Reference

The VGC Interrupt register

The VGC Interrupt register ($C023) contains a status bit and an enable bit for each of the
two interrupts. When an interrupt occurs, the interrupt status bit for that interrupt is set.
The VGC interrupt bit (bit 7) is set and the interrupt request (IRQ) line is asserted if the
interrupt status bit and interrupt enable bit are set for one or more interrupts.

You enable an interrupt by writing to the appropriate positions in the VGC Interrupt
register; the interrupt source hardware sets the status bits. Software can directly
manipulate only the enable bits in the VGC Interrupt register; writing to the other bit
positions has no effect. Figure 4-3 shows the format of the VGC Interrupt register.
Table 4-1 gives a description of each register bit.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

= Figure 4-3 VGC Interrupt register at $C023

7160514 312]1]0

VGC Interrupt status 4|
1-second Interrupt status

Scan-line Interrupt status

Reserved; do not modify —

Reserved; do not modify —

1-second Interrupt enable —

Scan-line Interrupt enable —

Reserved; do not modify —

Chapter 4 The Video Displays 59

= Table 4-1 Bits in the VGC Interrupt register
Bit Value Description
7 1 VGC interrupt status: This bit is set when the interrupt
bit and the status bit are set for one or more of the
interrupts.
0 This bit is 0 when all interrupts have been cleared.
0 1 One-second interrupt status: 1 = interrupt has occurred.
0 0 = interrupt is cleared.
5 1 A scan-line interrupt status: 1 = interrupt has occurred.
0 0 = interrupt is cleared.
4-3 - Reserved; do not modify.
2 1 One-second interrupt is enabled.
0 Interrupt is disabled.
1 1 Scan-line interrupt is enabled.
0 Interrupt is disabled.
0 - Reserved; do not modify.

The VGC Interrupt-Clear register

Once an interrupt has occurred, the interrupt routine must proceed to clear the interrupt
and take some predetermined interrupt-handling action. To clear the scan-line and one-
second status bits, write a 0 into the corresponding bit position in the VGC Interrupt-
Clear register at $C032. Bit 5 clears the scan-line interrupt, and bit 6 clears the one-second
interrupt in the VGC Interrupt-Clear register. Writing a 1 into these positions or writing
into the other bit positions has no effect. Figure 4-4 shows the format of the VGC
Interrupt-Clear register. Table 4-2 gives a description of each bit.

A Warning

60

Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

Apple IIGS Hardware Reference

= Figure 44 VGC Interrupt-Clear register at $C032

r Y

Reserved; do not modify 1
|
\

7165143 21]0

Reserved; do not modify J
Clear bit for 1-second interrupt

Clear bit for scan-line interrupt

= Table 4-2 Bits in the VGC Interrupt-Clear register

Bit Value Description
7 - Reserved; do not modify.
0 1 Undefined result.

0 Write a 0 here to clear the one-second interrupt.
5 1 Undefined result.

0 Write a 0 here to clear the scan-line interrupt.
4-0 - Reserved; do not modify.

Video outputs

The Apple 11GS shares several display modes with previous Apple IT computers. The
Apple 1IGS supports and enhances these existing Apple II video modes:

= 40-column and 80-column text modes
= mixed text/graphics mode

= Lo-Res graphics mode

s Hi-Res graphics mode

= Double Hi-Res graphics mode

Chapter 4 The Video Displays 61

Enhancements to the existing Apple II video modes include the following:

= The ability to select unique text and background colors from the list in Table 4-3.

= The ability to select the border color for the perimeter of the video image on an RGB
monitor; you can choose this color from the list in Table 4-3.

= The ability to display gray-scale video; you can display color video output on
monochrome monitors in shades of gray rather than in dot patterns that represent
color, which increases contrast between graphics colors on a monochrome monitor.

= Table 4-3 Text and background colors

Color Color

value Color value Color

$0 Black $8 Brown

$1 Deep red $9 Orange
§2 Dark blue SA Light gray
$3 Purple $B Pink

$4 Dark green $C Green

$5 Dark gray $D Yellow

$6 Medium blue ~ $E Aquamarine
$7 Light blue SF White

Removing color from the composite video signal in 40-column and 80-column text modes
makes text more readable. Color is not removed when the computer is running in mixed
text/graphics modes, and the four lines of text at the bottom of the display will exhibit

color fringing on composite color monitors.

Apple II video

All Apple IT computers can display video in several different ways, displaying text as well
as color graphics. The standard Apple II text and graphics modes are discussed here, while
the new Super Hi-Res graphics modes are discussed later in this chapter.

62

Apple 1IGS Hardware Reference

The primary output device is the video display. You can use any ordinary video monitor,
either color or black-and-white, to display video information from the

Apple 1IGS. An ordinary monitor is one that accepts composite video compatible with the
standard set by the National Television Standards Committee (NTSC). If you use standard
Apple II color graphics with a monochrome (single-color) monitor, the display will appear
as that color (black, for example) and various patterns made up of shades of that color.

If you are using only 40-column text and Lo-Res graphics modes, you can use a television
set for your video display. If the television set has an input connector for composite
video, you can connect it directly to your computer; if it does not, you'll need to attach a
radio-frequency (RF) video modulator between the Apple IIGS and the television set.

& Note: The Apple 11GS can produce an 80-column text display. However, if you use an

* ordinary color or black-and-white television set, 80-column text will be too blurry to
read. For a clear 80-column display, you must use a high-resolution video monitor with
a bandwidth of 7 MHz or greater.

The specifications for the video display are summarized in Table 4-4.

The video signal produced by the Apple I1Gs is NTSC-compatible composite color video. lw
It is available at two places: at the RCA-type phono jack and at the RGB video connector, ﬂ
both on the back of the computer. Use the RCA-type phono jack to connect a composite |
video monitor or an external video modulator; use the RGB video connector to connect ;'
an analog-input RGB monitor. [

The Apple IIGS can also display Super Hi-Res graphics, although it is not a standard H
Apple II video display mode. Super Hi-Res graphics are discussed more fully later in this ‘
chapter.

Chapter 4 The Video Displays 63

= Table 4-4 Standard Apple II video display specifications

Display modes 40-column text; map: Figure 4-5.
80-column text; map: Figure 4-0.
Lo-Res color graphics; map: Figure 4-7.
Hi-Res color graphics; map: Figure 4-8.
Double Hi-Res color graphics; map: Figure 4-9.

Text capacity 24 lines by 80 columns (character positions).
Character set 128 ASCII characters. (See Appendix C for a list of
display characters.)

Display formats Normal, inverse, flashing, MouseText (Table 4-10).
Lo-Res color graphics 16 colors (Table 4-14): 40 horizontal by 48 vertical;
map: Figure 4-7.

Hi-Res color graphics 6 colors (Table 4-15): 140 horizontal by 192 vertical

(restricted). Black-and-white: 280 horizontal by
192 vertical; map: Figure 4-8.
Double Hi-Res color graphics 16 colors (Table 4-16): 140 horizontal by 192 vertical (no
restrictions). Black-and-white: 560 horizontal by
192 vertical; map: Figure 4-9.

The 40-column and 80-column text modes can display all 128 ASCII (American Standard
Code for Information Interchange) characters: uppercase and lowercase letters, numbers,
and symbols. (See the display maps in Figures 4-5 and 4-0.) The Apple 1IGS can also display
MouseText characters.

Any of the graphics displays can have four lines of text at the bottom of the screen. The
text may be either 40-column or 80-column, except that Double Hi-Res graphics may have
only 80-column text at the bottom of the screen. Graphics displays with text at the
bottom are called mixed-mode displays.

The Lo-Res graphics display is an array of colored blocks, 40 wide by 48 high, in any of 16
colors. (See the map in Figure 4-7.) In mixed mode, 4 lines of text replace the bottom 8
rows of blocks, leaving 40 rows of 40 blocks each.

The Hi-Res graphics display is an array of pixels, 280 wide by 192 high. (See the map in
Figure 4-8.) There are six colors available in Hi-Res displays, but a given pixel can use only
four of the six colors. If color is used, the display is 140 pixels wide by 192 high. If
monochrome video is desired, the display is 280 pixels wide by 192 high. In mixed mode,
the four lines of text replace the bottom 32 rows of pixels, leaving 160 rows of 140 (or 280)
pixels each.

4 Apple 11Gs Hardware Reference

The Double Hi-Res graphics display uses main and auxiliary memory to display an array of
pixels, 500 wide by 192 high. (See the map in Figure 4-9.) All the pixels are visible in black
and white. If color is used, the display is 140 pixels wide by 192 high with 16 colors
available. If monochrome video is desired, the display is 560 pixels wide by 192 high. In
mixed mode, the four lines of text replace the bottom 32 rows of pixels, leaving 160 rows
of 140 (or 560) pixels each. In mixed mode, the text lines can be 80 columns wide only.

= Figure 45 Map of 40-column text Page 1 display (Add 1024 [$400] to get Page 2
addresses.)

Row

$400 1024
$480 1152
$500 1280
$580 1408
$600 1536
$680 1664
$700 1792
$780 1920
$428 1064
$4A8 1192
$328 1320
$5A8 1448
$628 1576
$6A8 1704
$728 1832
$7A8 1960
$450 1104
$4D0 1232
$330 1360
$5D0 1488
$650 1616
$6DO 1744
$750 1872
$7D0 2000

D e = N L S e =]

—_
[e]

—_
—_

—_
o

—
o

—
=N

Al

—_
I

—_
N

—_
~

—
[ee]

—
O

Do
(=)

[S8]
—_

Do
(3]

|]
(SN

Chapter 4 The Video Displays 65

= Figure 4-6

Row

O ol O N e W o — O

— = e e —
G R N N S R

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
5628
S6A8
$728
$7A8
$450
$4D0
$550
$5D0

1024
1152
1280
1408
1536
1604
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1300
1488

Map of 80-column text display

I Main Memory I ___________

$00 01 $02 $03 S04 $05 $06
[0 1 2 3 4 5 6

3233 363536 37 38 39

$20 $21 $22 $23 $24 §25 $26 827

o oo DY
W = O

06

$650
$6D0
$750
S7D0

1616
1744
1872
2000

{?f;"$o1;“502"'$03__$04"$05_'$06"307
0

12 3 4 5 6 7

\

//f"L“‘~g___r””

20 S21 $22 $23 $24 $25 $26 $27 |
32 33 3 35 36 37 38 30

Auxiliary Memory |

Apple 1IGS Hardware Reference

= Figure 47 Map of Lo-Res graphics Page 1 display (Add 1024 [$400] to get
Page 2 addresses.)

8500258582388 2855 5505205022502 580UE8YSE
Row SO TInor a2l TN SR EAFIAIILSELIIR/LARICRERRA
0 $400 1024
2 8480 1152
4 $500 1280
6 $580 1408
8 $600 1536
10 $680 1664
125700 1792

14 §780 1920
16 $428 1004
18 $4A8 1192
20 $528 1320
22 $5A8 1448
24 $628 1704
26 $6A8 1576
28 $728 1832
30 $7A8 1960
328450 1104
34 $4D0 1232
36 $550 1360
38 $5D0 1488
{ | 40 $650 1616
f { 42 $6D0 1744
P
|
[

44 $750 1872
46 $7D0 2000

e Chapter 4 The Video Displays 67

= Figure 4-8

Row
0 $2000 8192
1 $2080 8320
2 $2100 8448
3 $2180 8576
4 $2200 8704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488
11 $21A8 8616
12 $2228 8744
13 $22A8 8872
14 $2328 9000
15 $23A8 9128
16 $2050 8272
17 $20D0 8400
18 $2150 8528
19 $21D0 8656

20 $2250 8784
21 $22D0 8912
22 $2350 9040
23 $23D0 9168

68

Apple 1IGS Hardware Reference

Map of Hi-Res graphics Page 1 display (Add 8192 [$2000] to get
Page 2 addresses.)

— <L OAKMEO—~NOFINOM~N0OAN<COAOMBED— N QT N\ IS
SR - R R SR b S i S--E i b8 - BB B DS B> B S S]
SHANOFTNOROAS NI N EEXIGIINTERRIARRALRIA(RERA

\\\\L
—~
\ \\\\
+ 0 +$0000

+1024 +$0400
+2048 +80800
+3072 +$0C00
+4096 +$1000
+5120 +81400
+6144 +$1800

+7168 +$1C00

= Figure 4-9

Row
0 $2000 8192
1 $2080 8320
2 $2100 8448
3 $2180 8576
4 $2200 8704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488
11 $21A8 8616
12 $2228 8744
13 $22A8 8872
14 $2328 9000
15 $23A8 9128
16 $2050 8272
17 $20D0 8400
18 $2150 8528
19 $21D0 8656

Map of Double Hi-Res graphics display

_I Main Memory I

$00 $01 $02 $03 S04 $05 $00

| 0 1 2 3 4 5 6

$20 S21 $22 $23 24 25 $26 $27J

2 3

34

35

363738 39

| —

20 $2250 8784
21 $22D0 8912
22 $2350 9040
23 $23DO 9168

\

/

500 $01 $02 $03 S04 $05 $06 $07

7 A\

0 1 2 3 4 5 06

Auxiliary Memory |

Chapter 4 The Video Displays

+ 0 +50000 _|

+1024 +$0400 | |

+2048 +$0800 —

+3072+$0C00 | |

+4096 +$1000 |

+5120 +$1400 —

#6144 451800 |

1

+7168 +$1C00

0]

NTSC versus RGB video

The composite video signal, available at the composite video connector at the

rear of the Apple IIGS case, will drive a standard NTSC composite color video
monitor.

The RGB video signals are three separate color signals, which individually
control the three colors (red, green, and blue) within an RGB color video
monitor. The RGB video connector is located at the rear of the computer.
Connect only an RGB video monitor with analog inputs to this connector.

Figure 4-10 shows the pin diagram of this connector, and Table 4-5 lists the signal

associated with each pin.

» Figure 410 RGB video connector

®OOOOOOO
OBOHOHOHO®EO

= Table 4-5 RGB video signals

Pin Signal Description

1 GND Ground reference and supply
2 RED Red analog video signal

3 COMP Composite sync signal

4 N.C. No connection

5 GREEN Green analog video signal

0 GND Ground reference and supply
7 -5V -5-volt supply

8 +12V +12-volt supply

9 BLUE Blue analog video signal

10 N.C. No connection

11 SOUND Analog sound output

12 NTSC/PAL Composite video output

13 GND Ground reference and supply
14 N.C. No connection

70 Apple 1IGs Hardware Reference

Video display pages

The Apple 1IGS generates its video displays by using data stored in specific areas in
memory. These areas, called display pages, serve as buffers where your programs can put
data to be displayed. Each byte in a display buffer controls an object at a certain location
on the display. In text mode, the object is a single character; in Lo-Res graphics mode, the
object is two stacked colored blocks; and in Hi-Res and Double Hi-Res modes, it is a line
of seven adjacent pixels.

The 40-column text and Lo-Res graphics modes use two display pages of 1024 bytes each.
These are called text Page 1 and text Page 2, and they are located at 1024 through 2047
(80400 through $07FF) and 2048 through 3071 ($0800 through $OBFF) in main memory.
Normally, only text Page 1 is used, but you can put text or graphics data into text Page 2
and switch displays instantly. Either page can be displayed as 40-column text, Lo-Res
graphics, or mixed mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-column mode—1920
bytes—but it cannot switch pages. The 80-column text display uses a combination page
made up of text Page 1 in main memory plus another page in auxiliary memory. This
additional memory is not the same as text Page 2—in fact, it occupies the same address
space as text Page 1, and there is a special soft switch that enables you to store data into
it. (See the next section, “Display Mode Switching.”) The built-in firmware 1/O routines,
described in the Apple IIGS Firmware Reference, take care of this extra addressing
automatically; that is one reason to use these routines for all your normal text output.

The Hi-Res graphics mode also has two display pages, but each page is 8192 bytes long. In
the 40-column text and Lo-Res graphics modes, each byte controls a display area 7 pixels
wide by 8 pixels high. In Hi-Res graphics mode each byte controls an area 7 pixels wide by
1 pixel high. Thus, a Hi-Res display requires 8 times as much data storage, as shown in
Table 4-6.

The Double Hi-Res graphics mode uses Hi-Res graphics Page 1 in both main and auxiliary
memory. Each byte in those pages of memory controls a display area 7 pixels wide by 1
pixel high. This gives you 5600 pixels per line in black and white, and 140 pixels per line in
color. A Double Hi-Res display requires twice the total memory of Hi-Res graphics, and 16
times as much as a Lo-Res display.

Chapter 4 The Video Displays

71

= Table 4-6 Video display locations

Lowest address Highest address
Display _— ————

Display mode page Hex Dec Hex Dec
40-column text, 1 $0400 1024 $O7FF 2047
Lo-Res graphics 2 $0800 2048 SOBFF 3071
80-column text 1 $0400 1024 SO7FF 2047
2* $0800 2048 $OBFF 3071
Hi-Res graphics 1 $2000 8192 S3FFF 10383
2 $4000 106384 $5FFF 24575
Double High-Res 1t $2000 8192 $3FFF 16383
graphics 27 $4000 16384 $SFFF 24575

* Lo-Res graphics on Page 2 is not supported by firmware; for instructions on how to switch
pages, refer to the next section, “Display Mode Switching.”

+ See the section “Double Hi-Res Graphics” later in this chapter.

Display mode switching

You select the display mode that is appropriate for your application by reading or writing
to a reserved memory location called a soft switch. In the Apple IIGS, most soft switches
have three memory locations reserved for them: one for turning the switch on, one for
turning it off, and one for reading the current state of the switch.

Table 4-7 shows the reserved locations for the soft switches that control the display
modes. For example, to switch from mixed mode to full-screen graphics in an assembly-
language program, you could use the instruction

STA $C052

To do this in a BASIC program, you could use the instruction
POKE 49234,0

Some of the soft switches in Table 4-7 must be read, some must be written to, and for
some you can use either action. When writing to a soft switch, it doesn’t matter what
value you write; the action occurs when you address the location, and the value is ignored.

72 Apple 1IGS Hardware Reference

= Table 4-7 Display soft switches

Name Action* Location Function

CLR80COL W $C000 (49152) Disable 80-column store.
SET80COL W $C001 (49153) Enable 80-column store.
CLR8OVID W $CO0C (49164) Disable 80-column hardware.
SET80VID A $CO0OD (49165) Enable 80-column hardware.
CLRALTCHAR W $COOE (491606) Normal lowercase character

set; flashing uppercase
character set.

SETALTCHAR W $COOF (49167) Normal, inverse character set;
no flashing.

RD80OCOL R7 $C018 (49176) Read CLR/SET80COL switch:
1 = 80-column store enabled.

RDVBL BAR ~ R7 $C019 (49177) Read vertical blanking
(VBL): 1 = not VBL.

RDTEXT R7 $CO1A (49178) Read TXTCLR/TXTSET
switch: 1 = text mode
enabled.

RDMIX R7 $COIB (49179) Read MIXCLR/MIXSET

switch: 1 =mixed mode
enabled.

RDPAGE?2 R7 $CO1C (49180) Read TXTPAGE1/TXTPAGE2
switch: 1 = text Page 2
selected.

RDHIRES R7 $CO1ID (49181) Read HIRES switch:
1 = Hi-Res mode enabled.

ALTCHARSET R7 $CO1E (49182) Read
CLRALTCHAR/SETALTCHAR
switch: 1 = alternate
character set in use.

RD8OVID R7 $COIF (49183) Read CLR80OVID/SETS0VID
switch: 1 = 80-column

0w hardware in use.

| RDDHIRES RS $C046 (49222) Read SETAN3/CLRAN3
switch: 0 = Double Hi-Res
graphics mode selected.

S Lk L L e e

(Continued)

Chapter 4 The Video Displays 73

= Table 47 Display soft switches (Continued)

Name Action* Location Function

TXTCLR R/W $C050 (49232) Select standard Apple II
graphics mode, or, if MIXSET
on, mixed mode.

TXTSET R/W $C051 (49233) Select text mode only.
MIXCLR R/W $C052 (49234) Clear mixed mode.
MIXSET R/W $C053 (49235) Select mixed mode.
TXTPAGE1 R/W $C054 (49230) Select text Page 1.
TXTPAGE2 R/W $C0O55 (49237) Select text Page 2, or, if

SET80COL on, text Page 1 in
auxiliary memory.
LORES R/W $C056 (49238) Select Lo-Res graphics mode.

HIRES R/W $CO57 (49239) Select Hi-Res graphics mode,
or, if SETAN3 is on, select
Double Hi-Res graphics

mode.
CLRAN3 R/W SCOSE (49246) See Table 4-8.
SETAN3 R/W SCOSF (49247) See Table 4-8.

*

W means write anything to the location, K means read the location, &/W means read or write, R7 means
read the location and then check bit 7, and R5 means read the location and then check bit 5. j

& Note: You may not need to deal with these functions by reading and writing directly to
the memory locations in Table 4-7. Many of the functions shown here are selected
automatically if you use the display routines in the various high-level languages on
the Apple 1IGs.

Any time you read a soft switch, you get a byte of data. However, the only information
the byte contains is the state of the switch, and this occupies only one bit—bit 7, the
high-order bit. The other bits in the byte are always 0.

If you read a soft switch from a BASIC program, you get a value between 0 and 255. Bit 7
has a value of 128, so if the switch is on, the value will be equal to or greater than 128; if the
switch is off, the value will be less than 128.

74 Apple 1IGS Hardware Reference

Mixing address modes

[t is possible to display combinations of modes on the video display. The combination
can be any mode of graphics combined with either 40-column or 80-column text, graphics
only, or text-only modes. Table 4-8 lists the possible combinations, and the state of the
soft switches to achieve the display modes.

= Table 4-8 Video display mode combinations

New-Video reg. AN3 TEXT HIRES 80COL

(8€029) bit 5 (5C046) (5€010) (5Co1D) ($C018) Video mode

- - 1 - 0 40-column text

- - 1 - 1 80-column text

- 1 0 0 0 Lo-Res graphics and 40-column text
- 1 0 0 1 Lo-Res graphics and 80-column text
- 0 0 0 1 Medium-Res (80-column) graphics
- 1 0 1 0 Hi-Res graphics and 40-column text
- 1 0 1 1 Hi-Res graphics and 80-column text
0 0 0 1 1 Double-Hi-Res, 16-color

1 0 0 1 1 Double-Hi-Res, black-and-white

Addressing display pages directly

Before you decide to use the display pages directly, consider the alternatives. Most high-

level languages enable you to write statements that control the text and graphics displays.

Similarly, if you are programming in assembly language, you may be able to use the display

features of the built-in 1/0 firmware. You should store directly into display memory only if
the existing programs can’t meet your requirements.

The display memory maps are shown in Figures 4-5, 4-6, 4-7, 4-8, and 4-9. All the different
display modes use the same basic addressing scheme: Characters or graphics bytes are
stored as rows of 40 contiguous bytes, but the rows themselves are not stored at locations
corresponding to their locations on the display. Instead, the display address is
transformed so that three rows that are eight rows apart on the display are grouped
together and stored in the first 120 locations of each block of 128 bytes ($80
hexadecimal). By folding the display data into memory this way, the Apple I1Gs stores all
960 characters of displayed text within 1K of memory.

Chapter 4 The Video Displays 75

The Hi-Res graphics display is stored in much the same way as text, but there are eight
times as many bytes to store, because eight rows of pixels occupy the same space on the
display as one row of characters. The subset consisting of all the first rows from the groups
of eight is stored in the first 1024 bytes of the Hi-Res display page. The subset consisting
of all the second rows from the groups of eight is stored in the second 1024 bytes, and so
on for a total of eight times 1024, or 8192 bytes. In other words, each 1024 bytes of Hi-
Res video memory contains one row of pixels from every group of eight rows. The
individual rows are stored in sets of three 40-byte rows, the same as the text display.

All of the display modes except 80-column text mode and Double Hi-Res and Super Hi-Res
graphics modes can use either of two display pages. The display maps show addresses for
each mode’s Page 1 only. To obtain addresses for text or Lo-Res graphics Page 2, add 1024
($400) to the Page 1 addresses; to obtain addresses for Hi-Res graphics Page 2, add 8192
(82000) to the Page 1 addresses.

The 80-column text display and Double Hi-Res graphics modes work a little differently.
Half of the data are stored in the normal text Page 1 main memory, and the other half are
stored in auxiliary memory using the same addresses as for text Page 1. The display
circuitry fetches bytes from these two memory areas simultaneously and displays them
sequentially: first the byte from the auxiliary memory, then the byte from the main
memory. The main memory stores the characters in the odd columns of the display, and
the auxiliary memory stores the characters in the even columns.

To store display data in the 80-column text display, first turn on the SET80COL soft switch
by writing to location $C001. With SET80COL on, the page-select switch, TXTPAGE2, selects
between the portion of the 80-column display memory in Page 1 of main memory and the
portion stored in the 80-column text display memory. To enable the 80-column text display,
turn the TXTPAGE2 soft switch on by reading or writing at location $C055.

The text window

After you have started up the computer or after a reset, the firmware uses the entire video
display. However, you can restrict video activity to any rectangular portion of the display
you wish. The active portion of the display is called the text window. You can set the
top, bottom, left side, and width of the text window by storing the appropriate values
into four locations in memory. Using these memory locations allows you to control the
placement of text in the display and to protect other portions of the screen from being
written over by new text.

Memory location $20 contains the number of the leftmost column in the text window. This
number is normally 0, the number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is $27; in an 80-column display, the maximum
value is $4F.

76 Apple 1IGS Hardware Reference

Memory location $21 holds the width of the text window. For a 40-column display, it is
normally $28; for an 80-column display, it is normally $50.

A Warning Be careful not to let the sum of the window width and the leftmost
position in the window exceed the width of the display you are using
(40 or 80). If this happens, it is possible to put characters into
memory locations outside the display page, which might destroy
programs or data. a

Memory location $22 contains the number of the top line of the text window. This is
normally 0, the topmost line in the display. Its maximum value is $17.

Memory location $23 contains the number of the bottom line of the screen, plus 1. It is
normally $18 for the bottom line of the display. Its minimum value is $01.

After you have changed the text window boundaries, nothing is affected until you send a
character to the screen.

A Warning Any time you change the boundaries of the text window, you should
make sure that the current cursor horizontal position (CH, stored at
$24) and cursor vertical position (CV, stored at $25) are within the new
window values. If they are outside, it is possible to put characters into
memory locations outside the display page, which might destroy
programs or data. a

Table 4-9 summarizes the memory locations and the possible values for the window

parameters.
= Table 49 Text window memory locations
Normal values Maximum values
Mini
Location value 40-column 80-column 40-column 80-column
Window
parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

Left edge 32820 00 $00 00 $00 00 $00 39 $27 79 $4F
Width 33§21 00 $00 40 $28 80 $50 40 $28 80 $50
Top edge 34§22 00 $00 00 $00 00 $00 23§17 23§17
Bottom edge 35 $23 01 $01 24 $18 24 $18 24 $18 24 $18

Chapter 4 The Video Displays 77

Text displays

The Apple 11Gs, like all standard Apple I computers, can display text in two ways: 40
columns wide by 24 rows, or 80 columns wide by 24 rows. Many character sets are
available, including standard alphanumeric characters, special characters, and MouseText
characters.

Text on the Apple 1IGS can also be displayed in color: The text, background, and border
each can be a different color. The following sections give details about the text displays.

Text modes

The text characters displayed include the uppercase and lowercase letters, the ten
numerical digits, punctuation marks, and special characters. Each character is displayed in
an area of the screen that is seven pixels wide by eight pixels high. The characters are
formed by a pixel matrix five pixels wide, leaving two blank columns of pixels between
characters in a row, except for MouseText characters, some of which are seven pixels
wide. Except for lowercase letters with descenders and some MouseText characters, the
characters are only seven pixels high, leaving one blank line of pixels between rows of
characters.

The normal display has white pixels on a medium blue background. (Other color text on
other color backgrounds is also possible, as described later in this chapter.) Characters
can also be displayed in inverse format with blue pixels on a white background.

Text character sets

The Apple IIGS can display either of two selected text character sets: the primary set or an
alternate set. The forms of the characters in the two sets are actually the same, but the
available display formats are different. The display formats are

= normal

= inverse

» flashing, alternating between normal and inverse

With the primary character set, the Apple I1IGS can display uppercase and special
characters in all three formats: normal, inverse, and flashing. Lowercase letters can be
displayed in normal format only. The primary character set is compatible with most

software written for other Apple II models, which can display text in flashing format but
which don’t have lowercase characters.

78 Apple 1IGs Hardware Reference

The alternate character set displays characters in either normal or inverse format. In normal
format, you can get

= uppercase letters
= lowercase letters
= numbers

m special characters

In inverse format, you can get

m MouseText characters

m uppercase letters

= lowercase letters

= numbers

m special characters

You select the character sets by means of the alternate-text soft switch, SETALTCHAR,
described earlier in this chapter in the section “Display Mode Switching.” Table 4-10 shows

the character codes in hexadecimal for the primary and alternate character sets in normal,
inverse, and flashing formats.

Each character on the screen is stored as one byte of display data. The low-order six bits
make up the ASCII code of the character being displayed. The remaining two (high-order)
bits select inverse or flashing format and uppercase or lowercase characters. In the primary
character set, bit 7 selects inverse or normal format and bit 6 controls character flashing.
In the alternate character set, bit 6 selects between uppercase and lowercase, according
to the ASCII character codes, and flashing format is not available.

= Table4-10 Display character sets

Primary character set Alternate character set
\}:l}:les Character type Format Character type Format
$00-$1F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$5F Uppercase letters Flashing MouseText Inverse
$60-$7F Special characters Flashing Lowercase letters Inverse
$80-$9F Uppercase letters Normal Uppercase letters ~ Normal
$AO0-$BF Special characters Normal Special characters Normal
$C0-$DF Uppercase letters Normal Uppercase letters ~ Normal
$E0-$FF Lowercase letters Normal Lowercase letters ~ Normal

Chapter 4 The Video Displays 79

40-column versus 80-column text: The Apple IIGS has two modes of text display:
40-column and 80-column. The number of pixels in each character does not change, but the
characters in 80-column mode are only half as wide as the characters in 40-column mode.
Compare Figures 4-11 and 4-12. On an ordinary color or black-and-white television set, the
narrow characters in the 80-column display blur together; you must use the 40-column
mode to display text on a television set.

= Figure 4-11 40-column text display

SUTILITIES

MNAaME TYPE BLOCKS MODIFIED
CREATED ENDFILE SUBTYPE
*STARTUPRP BAS 3 31 —-JUL—8S5S
0:00 <HNO DATE?> 1005
*S1 Bas 3 31 —-JuL—8s
0:00 <NO DaAaTE?> 100S
*SUZC BAaS 38 21 —-JuUuL—85S
0:00 <NO DATE?> 188848
*SUZE BAS 34 31 —JUL -85
0:00 <NO DAaTE?> 18586485
*SU1 .0BJ BIM 21 31 -JuL—85
0:00 <MNO DAaTE?> 15211 A=353200
*SUZ.0BJ BIM i 31 —-JuUL -85
0O:00 <NO DaAaTE:?> 3SEPS A=H2000
*SUZ.0oBJ BIMN &2 31 -JuL—85%S
0O:00 <MNO DATE> 31152 A=350EO0O
*SuUu4 . 0BJ - MAaR 18 31 -JUL—8S
0:00 <HNO DAaTE?> 8535
*SUS . 0BJ BIMN 1 31 —-JuUuL—85
0:00 <NO DATE?> 5 A=E8S5AC
*SUs . 0BJ VAR 15 21 —JuUL—8S5
0O:00 <NO DATE:?> &E348
*PRODOS Sws 30 18-—SEP—849
0O:00 <NO DATE:> 14848
*BAasSIC.SYSTEM STS 21 18-JuN—849
0O:00 <NO DATE?> 10290
ELOCKS FREE: 1328 BLOCKS USED: 272

TOTAL BLOCKS: 1s00

= Figure 412 80-column text display

/UTILITIES

NAME TYPE BLOCKS MODIFIED CREATED ENDFILE SUBTYPE
*STARTUP BAS 3 31-JUL-85 0:00 <NO DATE> 1005

*S1 BAS 3 31-JUL-85 0:00 <NO DATE> 1005

*SU2C BAS 38 31-JUL-83 0:00 <NO DATE> 18886

*SU2E BAS 34 31-JUL-85 0:00 <NO DATE> 16465
*SU1.0BJ BIN 31 31-JUL-85 0:00 <NO DATE> 15211 A=$3200
*SU2.08J BIN 9 31-JUL-85 0:00 <NO DATE> 3694 A=$2000
*SU3.0BJ BIN 62 31-JUL-85 0:00 <NO DATE> 31152 A=$0ED0
#SU4.0BJ VAR 18 31-JUL-85 0:00 <NO DATE> 8535
*SUS.0BJ BIN 1 31-JUL-85 0:00 <NO DATE> 9?5 A=$86AC
*SUé.0BJ VAR 15 31-JUL-85 0:00 <NO DATE> 6848
*PRODOS SYs 30 18-SEP-84 0:00 <NO DATE> 14848
*BASIC.SYSTEM SYS 21 18-JUN-84 0:00 <NO DATE> 10240

BLOCKS FREE: 1328 BLOCKS USED: 272 TOTAL BLOCKS: 1400

80 Apple TIGs Hardware Reference

Color text

New to the Apple IIGS is the ability to display the text, background, and border in color.
These colors may be set manually through the Control Panel, or under program control, via
control registers.

Text and background color

The Apple IIGS provides the capability of colored text on a colored background on an
RGB monitor. To select colors for text and background, write the appropriate color
values to the Screen Color register located at $C022.

The Screen Color register is an 8-bit dual-function register. First, the most significant 4 bits
determine the text color. Second, the least significant 4 bits determine the background
color. You can choose these colors from the 16 available Apple II colors given in Table 4-3.
The user can also select these colors from the Control Panel. Figure 4-13 shows the format
of the Screen Color register. Table 4-11 gives a description of each bit in the register.

= Figure 4-13 Screen Color register at $C022

Text color Background color |
- ' N/ : h |
Tl6l s 43210 ;

= Table 4-11 Bits in the Screen Color register

Bit Value Description
7-4 - Text color
3-0 - Background color

Border color

The colored border area surrounds the video display text area. You may select a color for
the border by writing the appropriate color value to the Border Color register located at
$C034. You can choose this color from the 16 Apple II colors listed in Table 4-3.
Alternately, the user can select the border color from the Control Panel.

Chapter 4 The Video Displays 81

The Border Color register is an 8-bit read/write register serving two functions. First, the
least significant 4 bits determine the border color. Second, the most significant 4 bits are
the control bits for the real-time clock chip interface logic. See the section on the real-
time clock interface in Chapter 7, “Built-in I/O Ports and Clock,” for more information on
the RTC. Figure 4-14 shows the Border Color register format. Table 4-12 gives a description
of each bit.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

» Figure 4-14 Border Color register at $C034

Real-time clock Border color
r - N : N
71615431210

s Table4-12 Bits in the Border Color register

Bit Value Description

7-4 - Real-time clock control bits;
do not modify bits 7-4
when changing bits 3-0

3-0 - Border color

Monochrome/Color register

The Apple 1IGS video is displayed in either color or black-and-white. Located at $C021,

the Monochrome/Color register controls whether the composite video signal consists of
color or gradations of gray. If bit 7 is a 1, video displays in black-and-white; if it is a 0,
video displays in color.

82 Apple 11Gs Hardware Reference

If you are using a monochrome monitor, set bit 7 to 1. Displaying text in black-and-white
results in a better-looking, more readable display. In text mode, all color information is
removed from the composite video signal, resulting in a monochrome text display. The
exception to this is the mixed text and graphics mode, which results in color text and
color fringing.

The remaining bits in the Monochrome/Color register are reserved; do not modify them
when writing to this location. You can also select color or monochrome video from the
Control Panel. Figure 4-15 shows the format of the Monochrome/Color register. Table 4-13
gives a description of each bit in the register.

A Warning Be careful when changing bit 7 in this register. Use only a read-modify-
write instruction sequence when manipulating bit 7. See the warning in
the preface. a

= Figure 4-15 Monochrome/Color register at $C021

Reserved; do not modify
4 : A

71615432 1]0

]

Color or monochrome video select

= Table 4-13 Bits in the Monochrome/Color register

Bit Value Description

7* 1 Composite gray-scale video output
0 Composite color video output

6-0 - Reserved; do not modify

* Changing bit 7 does not affect the RGB outputs.

& Note: Reading the Monochrome/Color register returns a meaningless value. Bit 7,
therefore, can be referred to as write-only.

Chapter 4 The Video Displays

Graphics displays

The Apple IIGS can produce standard Apple II Video graphics in three different modes, as
well as two new graphics resolutions. All the graphics modes treat the screen as a
rectangular array of spots. Normally, your programs will use the features of some high-level
language to draw graphics dots, lines, and shapes in these arrays; this section describes the
way the resulting graphics data are stored in memory.

Standard Apple II graphics modes

Apple 11Gs graphics can be displayed in several different resolutions. All standard Apple II
graphics modes are supported:

» Lo-Res graphics mode
» Hi-Res graphics mode
= Double Hi-Res graphics mode

Each of these graphics modes is described in the following sections.

Lo-Res graphics

In the Lo-Res graphics mode, the Apple I1GS displays an array of 48 rows by 40 columns of
colored blocks. Each block can be any of 16 colors, including black-and-white. On a
black-and-white monitor or television set, these colors appear as black, white, and three
shades of gray. There are no blank pixels between blocks; adjacent blocks of the same
color merge to make a larger shape.

Data for the Lo-Res graphics display are stored in the same part of memory as the data for
the 40-column text display. Each byte contains data for two Lo-Res graphics blocks. The
two blocks are displayed one atop the other in a display space the same size as a 40-
column text character, 7 pixels wide by 8 pixels high.

Half a byte—4 bits, or 1 nibble—is assigned to each graphics block. Each nibble can have
a value from 0 to 15, and this value determines which one of 16 colors appears on the
screen. The colors and their corresponding nibble values are shown in Table 4-14. In each
byte, the low-order nibble sets the color for the top block of the pair, and the high-order
nibble sets the color for the bottom block. Thus, a byte containing the hexadecimal value
$D8 produces a brown block atop a yellow block on the screen.

8 Apple 1IGS Hardware Reference

= Table4-14 Lo-Res graphics colors

Nibble value Nibble value

Dec Hex Color Dec Hex Color

0 $00 Black 8 $08 Brown

1 $01 Deep red 9 $09 Orange

2 $02 Dark blue 10 $0A Light gray

3 $03 Purple 11 $0B Pink

4 $04 Dark green 12 $0C Light green
5 $05 Dark gray 13 $0D Yellow

0 $06 Medium blue 14 $OE Aquamarine
7 807 Light blue 15 $O0F White

Note: Colors may vary, depending on the controls on the monitor or television set.

As explained earlier in this chapter in the section “Video Display Pages,” the text display
and the Lo-Res graphics display use the same area in memory. Most programs that
generate text and graphics clear this part of memory when they change display modes, but
it is possible to store data as text and display them as graphics, or vice versa. All you have
to do is change the mode switch, described earlier in this chapter in the section “Display
Mode Switching,” without changing the display data. This usually produces meaningless
jumbles on the display, but some programs have used this technique to good advantage
for producing complex Lo-Res graphics displays quickly.

Hi-Res graphics

In the Hi-Res graphics mode, the Apple 1IGS displays an array of 192 rows of 280
monochrome pixels, or 140 colored pixels. The smaller number of pixels in color is due to
the fact that it takes two bits in display memory to make one color pixel on the screen; in
monochrome, one bit makes one pixel. The colors available are black, white, purple,
green, orange, and blue.

Data for the Hi-Res graphics displays are stored in either of two 8192-byte areas in
memory. These areas are called Hi-Res graphics Page 1 and Page 2. It is in these buffer
areas that your high-level language program creates and manipulates the bit images that
will appear on the screen. This section describes the way the graphics data bits are
converted to pixels on the screen.

Chapter 4 The Video Displays

85

The Hi-Res graphics display is bit-mapped: Each pixel on the screen corresponds to a bit
(or, in color, 2 bits) in memory. The 7 low-order bits of each display memory byte control
a row of 7 adjacent pixels on the screen, and 40 adjacent bytes in memory control a row of
280 (7 times 40) pixels. The least significant bit of each byte is displayed as the leftmost
pixel in a row of 7, followed by the second least significant bit, and so on, as shown in
Figure 4-16. The eighth bit (the most significant) of each byte is not displayed; it selects
one of two color sets, as described later in this chapter.

= Figure 416 Hi-Res graphics display bits

Bits in data byte

71 6541321 1]0

O 121314560

Dots on graphics screen

On a black-and-white monitor, there is a simple correspondence between bits in memory
and pixels on the screen. A pixel is white if the bit controlling it is on (1), and the pixel is
black if the bit is off (0). On a black-and-white television set, pairs of pixels blur
together; alternating black-and-white pixels merge to a continuous gray.

On an NTSC color monitor or a color television set, a pixel whose controlling bit is off (0)
is black. If the bit is on, the pixel will be white or a color, depending on its position, the
pixels on either side, and the setting of the high-order bit of the byte.

Call the leftmost column of pixels column 0 and assume (for the moment) that the high-
order bits of all the data bytes are off (0). If the bits that control pixels in even-numbered
columns (0, 2, 4, and so forth) are on, the pixels are purple; if the bits that control odd-
numbered columns are on, the pixels are green—but only if the pixels on both sides of a
given pixel are black. If two adjacent pixels are both on, they are both white.

You can select the other two colors, blue and orange, by turning the high-order bit (bit 7)
of a data byte on (1). The colored pixels controlled by a byte with the high-order bit on
are either blue or orange: The pixels in even-numbered columns are blue, and the pixels in
odd-numbered columns are orange—again, only if the pixels on both sides are black.

86 Apple 1IGS Hardware Reference

Within each horizontal line of seven pixels controlled by a single byte, you can have black,
white, and one pair of colors. To change the color of any pixel to one of the other pair of

colors, you must change the high-order bit of its byte, which affects the colors of all seven
pixels controlled by the byte.

In other words, Hi-Res graphics displayed on a color monitor or television set are made up
of colored pixels, according to the following rules:

= Pixels in even columns can be black, purple, or blue.

» Pixels in odd columns can be black, green, or orange.

= If adjacent pixels in a row are both on, they are both white.

= The colors in each row of seven pixels controlled by a single byte are either purple and

green, or blue and orange, depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 4-15. The blacks and whites are numbered to remind
you that the high-order bit is different.

= Table4-15 Hi-Res graphics colors

Bits 0-6 Bit 7 off Bit 7 on
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary, depending on the controls on the monitor or television set.

The peculiar behavior of the Hi-Res colors reflects the way NTSC color television works.
The pixels that make up the Apple I1GS video signal are spaced to coincide with the
frequency of the color subcarrier used in the NTSC system. Alternating black-and-white
pixels at this spacing causes a color monitor or TV set to produce color, but 2 or more
white pixels together do not. Effective horizontal resolution with color is 140 pixels per
line (280 divided by 2).

Double Hi-Res graphics
In the Double Hi-Res graphics mode, the Apple 11Gs displays an array of 140 colored pixels

or 560 monochrome pixels wide and 192 rows deep. There are 16 colors available for use
with Double Hi-Res graphics. (See Table 4-16.)

Chapter 4 The Video Displays 87

.

= Table416 Double Hi-Res graphics colors

Repeated

color

pattern ab0 mbl ab2 mb3 Bit
Black $00 $00 $00 $00 0000
Deep red $08 $11 §22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Dark gray $2A $55 $2A $55 0101
Green $66 $4C $19 $33 0110
Yellow $OE $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $60 $4C 1001
Light gray $55 $2A $55 $2A 1010
Pink $5D $3B §77 SOE 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $OE $5D 1101
Aquamarine $77 $OE $5D $3B 1110
White $7F $7F $7F $7F 1111

Double Hi-Res graphics is a bit-mapping of the low-order 7 bits of the bytes in the main-
memory and auxiliary-memory pages at $2000 through $3FFF. The bytes in the main-
memory and auxiliary-memory pages are interleaved in exactly the same manner as the
characters in 80-column text: Of each pair of identical addresses, the auxiliary-memory
byte is displayed first, and the main-memory byte is displayed second. Horizontal
resolution is 560 pixels when displayed on a monochrome monitor.

Unlike Hi-Res color, Double Hi-Res color has no restrictions on which colors can be
adjacent. Color is determined by any 4 adjacent pixels along a line. Think of a 4-pixel-wide
window moving across the screen: At any given time, the color displayed will correspond
to the 4-bit value from Table 4-16 that corresponds to the window’s position (Figure 4-9).
Effective horizontal resolution with color is 140 (560 divided by 4) pixels per line.

To use Table 4-16, divide the display column number by 4, and use the remainder to find
the correct column in the table: ab0 is a byte residing in auxiliary memory, corresponding
to a remainder of zero (byte 0, 4, 8, and so on); mb1 is a byte residing in main memory,
corresponding to a remainder of one (byte 1, 5,9 and so on), and similarly for ab3

and mb4.

88 Apple 1IGs Hardware Reference

e !

Super Hi-Res graphics

The Apple 11Gs has two graphics modes that are new to the Apple IT family. These are the
320-pixel and 640-pixel Super Hi-Res graphics modes, which increase horizontal resolution
to either 320 or 640 pixels and increase vertical resolution to 200 lines. The VGC is primarily
responsible for implementing the Super Hi-Res video graphics, which provide these
capabilities:

» 320- or 640-pixel horizontal resolution

= 200-line vertical resolution

m 12-bit color resolution that allows choices from 4096 available colors
= 16 colors for each of the 200 lines—up to 256 colors per frame

s Color Fill mode

m scan-line interrupts

= all new video mode features, programmable for each scan line

s linear display buffer

= pixels contained within byte boundaries

The New-Video register

When a standard Apple I video mode (Lo-Res, Hi-Res, or Double Hi-Res graphics) is
enabled, the Mega II accesses the video memory buffers and generates video. When Super
Hi-Res graphics is enabled, the Video Graphics Controller has sole access to the video
buffers. The bit to enable this access, along with the memory map configuration switch, is
in the New-Video register located at $C029. The bit descriptions for this register are
shown in Figure 4-17. Table 4-17 gives a description of each bit.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

Chapter 4 The Video Displays

Table 4-17 Bits in the New-Video register

Bit

Value

Description

Selects Apple II video mode. If this bit is 0, all existing
Apple II-compatible video modes are enabled. The
Mega II alone reads the video memory during the video
cycles and generates the video.

Selects Super Hi-Res graphics video modes. If this bit is
1, all standard Apple II video modes are disabled; either
320-pixel resolution (and Color Fill mode) or 640-pixel
resolution graphics are enabled. (The selection of 320 or
640 is made in the scan-line control byte for each line.)
Also, when this bit is 1, bit 6 is overridden, and the
memory map is changed to support the Super Hi-Res
graphics video buffer, as described below. (See the
description of bit 6.)

If this bit is 0, the 128K memory map is the same as the
Apple Ile.

If this bit is 1, the memory map is reconfigured for use
with Super Hi-Res graphics video mode: The video
buffer becomes one contiguous, linear address space
from $2000 through $9D00. (Figure 4-18 shows the Super
Hi-Res graphics buffer.)

If this bit is 0, Double Hi-Res graphics is displayed in
color (140 by 192, 16 colors).

If this bit is 1, Double Hi-Res graphics is displayed in
black-and-white (560 by 192).

Reserved; do not modify.

Enable bank latch. If this bit is 1, the 17th address bit is
used to select either the main or auxiliary memory bank.
If the address bit is 1, then the auxiliary bank is
enabled. (Actually data bit 0 is used as the 17th address
bit). If the address bit is 0, the state of the memory
configuration soft switches determines which memory
bank is enabled. See Chapter 3 for descriptions of the
memory configuration soft switches. Table 4-18 shows
how to use this bit to select a memory bank.

The 17th address bit is ignored.

* Set bit 6 to 0 whenever using Double Hi-Res graphics mode. This is ngcessary to ensure that the video

920

display will function properly.

Apple 1IGS Hardware Reference

= Figure 417 New-Video register

Reserved; do not modify

7165432 1]0

Enable Super Hi-Res graphics mode J
Linearize Super Hi-Res graphics video memory

Color or black-and-white Double Hi-Res graphics

Enable bank latch —

= Table4-18 Memory bank selection using bit 0 of the New-Video register

New-Video register

Bit 0 Data bit 0 Memory bank enabled
0 1 Auxiliary
0 Determined by state of memory configuration soft
switches
1 Ignored -

The Super Hi-Res graphics buffer

The Super Hi-Res graphics display buffer contains three types of data: scan-line control
bytes, color palettes, and pixel data. Figure 4-18 shows a memory map of the display
buffer. This buffer resides in contiguous bytes of the auxiliary 64K bank of the slow RAM
($ED) from $2000 through $9FFF. Note that this display buffer uses memory space used for
the Apple I Double Hi-Res graphics buffers, but leaves the other graphics and text display
buffers untouched.

The next three sections describe the scan-line control bytes, color palettes, and pixel data
bytes used in Super Hi-Res graphics mode.

Chapter 4 The Video Displays

91

= Figure 4-18 Super Hi-Res graphics display buffer

Memory bank $E1
| |
| |
| |
| |
| |
$OFFF
Color
palettes
$9E00
Scan-line
control bytes
$9D00
Pixel
data
$2000

Scan-line control bytes ($9D00-$9DC7)

An added advantage of the new Apple IIGS video graphics is the ability to select the Super
Hi-Res graphics horizontal resolution for each video scan line. The 200 scan-line control
bytes (located from $9D00 through $9DC7 as shown in Figure 4-18) control the features for
each scan line. There is one 8-bit control byte for each of the 200 scan lines. For each line,
you can select

» the palette (16 colors) to be used on the scan line
» Color Fill mode on the scan line
= an interrupt to be generated on the scan line

» either 320-pixel or 640-pixel resolution for the scan line

92 Apple IIGS Hardware Reference

The scan-line control byte bits and their functions are listed in Figure 4-19. Table 4-19 gives
a description of each bit.

A Warning Be careful when changing bits within this byte. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

= Figure 4-19 Scan-line control byte format

Palette select code

320 or 640 mode —

Generate interrupt —

Color Fill mode —

Reserved; do not modify —

= Table4-19 Bits in a scan-line control byte

Bit Value Description
7 1 Horizontal resolution = 640 pixels.
0 Horizontal resolution = 320 pixels.
0 1 Interrupt enabled for this scan line. (When this bit is a 1,

the scan-line interrupt status bit is set at the beginning
of the scan line.)
0 Scan-line interrupts disabled for this scan line.
5 1 Color Fill mode enabled. (This mode is available in Super
Hi-Res graphics 320-pixel resolution mode only; in 640-
pixel mode, Color Fill mode is disabled.)

0 Color Fill mode disabled.
4 - Reserved; write 0.
0-3 - Palette chosen for this scan line.

Chapter 4 The Video Displays 3

!

The location of the scan-line control byte for each scan line is $9Dxx, where xx is the
hexadecimal value of the line. For example, the control byte for the first scan line (line 0) is
located in memory location $9D00; the control byte for the second scan line (line 1) is in
location $9D01, and so forth.

& Note: The first 200 bytes of the 256 bytes in the memory page beginning at $9D00 are
scan-line control bytes, and the remaining 56 bytes are reserved for future expansion.
For compatibility with future Apple products, do not modify these 56 bytes.

Color palettes (S9E00-$9FFF)

A color palette is a group of 16 colors to be displayed on the scan line. Each scan line can
have one of 16 color palettes assigned to it. You can choose the 16 colors in each palette
from any of the 4096 possible colors. You can draw each pixel on the scan line in any of
these 16 colors.

These colors are determined by a 12-bit value made up of three separate 4-bit values. (12
bits allows 212 or 4096 possible combinations for each palette color.) Each 4-bit quantity
represents the intensity of each red, green, and blue. The combination of the magnitudes
of each of the three primary colors determines the resulting color. Figure 4-20 shows the
format of each of these 4-bit values that make up a palette color.

= Figure 420 Color palette format

Green Blue
| |

Evenbyte | 7| 6|5 4| 3| 2| 1]0

Reserved; do not modify Red
s : N/ : Al

Oddbyte [716|543 |2|1]0

% Apple IIGS Hardware Reference

The color palettes are located in video buffer locations $9E00 through $9FFF in bank $E0.
There are 16 color palettes in this space, with 32 bytes per palette. Each color palette
represents 16 colors, with 2 bytes per color. The palette indicated in the scan-line control
byte is used to display the pixels in color on the scan line. The starting address for each of
the color palettes and the colors within them are listed in Table 4-20. The 16 colors within a
palette have numbers $0 through $F. Note that each color begins on an even address.

Once you have filled the palettes with the colors to be used and selected the display
modes within each of the scan-line control bytes, you must choose which of the 16 colors
you are going to display for each pixel.

= Table 4-20 Palette and color starting addresses

Palette

number Color$0 Color $1 Color $E Color $F
$0 $9E00-01 $9E02-03 $9E1C-1D $OE1E-1F
$1 $9E20-21 $9E22-23 $9E3C-3D $OE3E-3F
$2 $9E40-41 $9E42-43 $9ESC-5D $9ESE-SF
$F $9FE0-E1 $OFE2-E3 . $OFFC-FD $OFFE-FF
Pixels

The Super Hi-Res graphics color information for each pixel is different for each of the two
resolution modes: 4 bits represent each pixel color in 320-pixel mode; 2 bits represent the
pixel color in 640-pixel mode. Higher resolution comes with a slight penalty, however:
Although in 320 mode a pixel may be any of 16 colors chosen from the palette, a pixel may
be one of only 4 colors in 640 mode.

The pixel data are located in the display buffer in a linear and contiguous manner; $2000
corresponds to the upper-left corner of the display, and $9CFF corresponds to the lower-
right corner. Each scan line uses 160 (SA0) bytes. Figure 4-21 shows the format in which the
pixel color data are stored in both the 320-pixel and 640-pixel modes.

Chapter 4 The Video Displays

= Figure 421 Pixel data byte format

Bitsinbyte | 7| 6 | 5| 4|3 2| 1]0

| I | | I | | I |
! | ! |

640 mode | Pixel1 | Pixel2 | Pixel3 | Pixel 4

320 mode Pixel 1 Pixel 2

In 320-pixel mode, four bits determine each pixel color, and data are stored two pixels to
a byte of the display buffer. Since four bits determine the pixel color, in 320 mode each
pixel can be any of the 16 colors from that palette.

In 640-pixel mode, color selection is more complicated. The 640 pixels in each horizontal
line occupy 160 adjacent bytes of memory, each byte representing 4 pixels that appear
side-by-side on the screen. The 16 colors in the palette are divided into four groups of 4
colors each. The first pixel in each horizontal line can select one of 4 colors from the third
group of 4 in the palette. The second pixel selects from the fourth group of 4 colors in the
palette. The third pixel selects from the first group of 4 colors, and the fourth pixel selects
from the second group, as shown in Table 4-21. The process repeats for each successive
group of 4 pixels in a horizontal line. Thus, even though a given pixel can be one of 4
colors, different pixels in a line can take on any of the 16 colors in a palette.

= Table 4-21 Color selection in 640 mode

Palette Palette
Pixel Value color Pixel Value color
3 0 $0 I 0 $8
1 $1 1 $9
2 $2 2 $A
3 $3 3 $B
4 0 $4 2 0 $C
1 $5 1 $D
2 $6 2 SE
3 §7 3 SF

9% Apple 1IGS Hardware Reference

.

Figure 4-22 shows the display screen and the pixels that make up each scan line. Also shown
are the pixel data bytes for both 640- and 320-pixel Super Hi-Res graphics mode. The scan-
line control bytes, one for each scan line, are shown at the right.

» Figure 422 Drawing pixels on the screen ’

640-pixel mode

Pixel data byte

1 2]3]¢4

1

\ Scan-line
| control bytes
$9D00

Pixels

$9DC7

Video dislglay screen

Chapter 4 The Video Displays 97

Dithering

In Super Hi-Res graphics mode using 640-pixel resolution, colors other than the available 4
palette colors may be displayed by a means called dithering. By choosing 2 adjacent
pixel colors that mix to obtain a third desired color, you can increase the number of hues
available. For example, in Figure 4-23, when red is selected from the available colors, the
scan line appears as red. Alternating red and yellow results in orange, and so on. Through
the use of dithering, as many as 16 colors can be generated.

Color Fill mode

Another feature of Apple IIGS video graphics is Color Fill, an option that simplifies the
task of painting continuous color on any one line. Color Fill, which is available in 320-pixel
mode only, is used to fill rapidly a large area of the video display with a single color. In this
mode, color $0 in the palette takes on a unique definition. Any pixel data byte containing
the color value $0 causes that pixel to take on the color of the previous pixel instead of
displaying a palette color. This means that only 15 unique palette colors ($1 through $F)
are available for each scan line, rather than 16 colors. For example, assume that A, B, and C
represent 3 different palette colors, 4 bits per pixel. These colors do not include color $0.
The desired color pattern for a series of pixels on a line might be as follows without Color
Fill mode:

AAARAAAAAAAABBBRBBBBBBBBCCCCCCCCCCCC

The same color pattern would be created by using Color Fill mode as follows:
AQ00000000000B0O0O000O000000C0O0000000000

Method 2 would save time: The program only needs to fill the pixel area of the scan line
once with 0, and then to write a color value into those locations where a color should begin
or change. In the example just given, only one byte needs to be written to implement each
new color on the scan line using the Color Fill method, as opposed to six bytes per color
without Color Fill.

The only restriction of the Color Fill mode is that the first pixel value on a scan line must
not be 0; if the first pixel value is 0, then an undetermined color results.

98 Apple IIGS Hardware Reference

e

» Figure 4-23 Examples of dithering

Color
White
Red
Blue
Black
White

Red
Minipalette 2 — Selecting the red palette color

Blue will result in a red scan line
Black

Whic 000000000
Red Scan line

Blue
Black
White
Red
Blue
L Black

Minipalette 1 —

Y4

N/~

Minipalette 3 —

N/

Minipalette 4 —

Color
White

Yellow

Minipalette 1 —
Green

Black
White

Red
Minipalette 2 Selecting alternate red and yellow palette

Blue color will result in an orange scan line
Black

Wi 000000000

Yellow Scan line

N/

Y4

Minipalette 3 —
Green

Black
White
Red
Blue
q Black

N

Minipalette 4 —

Chapter 4 The Video Displays 9

Chapter 5 Apple IIGS Sound

One of the Apple IIGS computer’s outstanding features is its sound
capability. By programming the Apple IIGS, you can utilize this powerful
sound-synthesizing ability; your ability to generate sounds is limited
only by your imagination. This chapter covers the Digital Oscillator Chip
(DOQ), the individual oscillators, and the many registers associated with
these oscillators. Also covered is the Sound General Logic Unit (GLU) and
its associated registers. Figure 5-1 shows the relationship of the sound
components to the rest of the computer.

101

= Figure 5-1 Sound components in the Apple TGS

Slots 1 2 3 4 5 6 7

Slotmaker E_E éﬁ
Digital-to-analog
| converters
Analog RGB
| vid video
) ideo
| Vldfl(.) amplifiers
T Mega Il 128K RAM Graphics
| Controller
Buffers | NTSC
: Real-time | — 7 generator
clock
| Composite
I video
I
——————— _i (250K A;ipie 1GS
only
| élgg Retrofit
|| | Serial | keypad
65C816 FPI || Communications
128K or | Controller WM —
1 MB RAM [ADB s
| micro-
E | controller |
I
i s | il
I Serial Serial \oooCCCCS kRe‘g ofit g
1 ortA port B Disk €yboar
2568KKR%rM P ’ port (250K Apple IGS |
Memory | Apple only)
expansion | Desktop External
slot | Bus speaker

The built-in speaker

The built-in speaker is located on the left side of the baseplate directly below the keyboard.
This sound output device is used as the primary device for standard Apple II sound output,
and also for the output of the Digital Oscillator Chip.

102 Apple IIGS Hardware Reference

One-bit sound

Quite complex sounds can be created simply by toggling a bit whose output is connected to
the speaker. This bit can be set and cleared by accessing (either reading or writing to)
location $C030. The faster you access this location, the faster the sound bit toggles and the
higher the pitch of the sound. Using timing loops in the application program will allow you to
toggle the speaker at any frequency starting at about 400 cycles per second. Below this
frequency, the speaker clicks on every other access to $C030.

If you switch the speaker once, it emits a click; to make longer sounds, you access the
speaker repeatedly.

& Note: If you access this soft switch by using an assembly-language indexed-mode
command, it switches twice in rapid succession. The resulting pulse is so short that the
speaker doesn’t have time to respond; it doesn’t make a sound.

With the inclusion of the DOC into the Apple 1IGS, sound generation becomes much more
sophisticated. The following sections describe the DOC and this computer’s powerful
sound-making ability.

Sound synthesis

Sound is synthesized by programming digital oscillators to produce waveforms that simulate
ordinary sounds (musical, human, or other) or generate unique ones. These waveforms can be
programmed manually (values placed in memory individually) or through digitization of an
external analog-input signal. As stated earlier, the Apple IIGS uses a toolbox of utilities to
perform many different functions: graphics, disk access, and sound. The following
description of the DOC is meant to familiarize you with the general principles of Apple 11GS
sound generation. When you program this computer for sound, using the toolbox utilities will
result in the proper use of the DOC and ensure software compatibility with future Apple II
products. (To find out how to use the sound tools, refer to the Apple IIGS Toolbox Reference.)

Chapter 5 Apple 1IGs Sound

103

™

The Sound GLU

To program the DOC or build a wavetable in the Sound RAM, you must write command and
data bytes to registers within the chip. This process is facilitated by the GLU, which serves as
an interface between the microprocessor, the DOC, and the dedicated 64K-by-8-bit
dynamic RAM. This interface allows the DOC chip to run independently of the rest of the
system.

The Sound GLU contains

s a Sound Control register

» a data register

= 2 pair of Address Pointer (high and low address) registers

These registers and their addresses are listed in Table 5-1 and described in detail in the
sections that follow.

= Table 5-1 GLU registers

GLU registers Address Type
Sound Control register $CO3C R/W
Data register $CO3D R/W
Address Pointer register, low byte $CO3E R/W ?
Address Pointer register, high byte $CO3F R/W

The Sound Control register

The Sound Control register controls whether the microprocessor accesses the DOC internal
registers or the Sound RAM. This register also controls whether or not the Address Pointer
registers auto-increment, that is, increment automatically after every RAM read or write,
thereby avoiding the necessity of reloading the pointers with addresses after each access.
Figure 5-2 shows the format of the Sound Control register. Table 5-2 gives a description of
each bit.

A Warning Do not use a read-modify-write command when altering bits in this
register. a

104 Apple IIGS Hardware Reference

= Figure 5-2 Sound Control register at $C03C

71615043 2[1]0
J -
DOC busy flag
DOC or RAM access
Address pointer auto-increment enable
Reserved; do not modify —
Volume —
= Table 5-2 Bits in the Sound Control register
Bit Value Description
7 1 When this read-only bit is 1, the DOC is busy. Loop on this
bit until it is clear.
0 When this bit is 0, the DOC is free. The DOC will respond

to register reads and writes.

All accesses are to the dedicated 64K RAM.
All accesses are to the DOC.

Address auto-incrementing is enabled.

Address auto-incrementing is disabled; Address Pointer
registers hold the last value.

- Reserved; do not modify.
3-0 - Volume control: $0 is low volume, $F is high volume.

O =D =

Data register

To load values into the DOC registers, write to the data register at $C03D. You also write to
this register when you want to place values in Sound RAM. If the Sound Control register is set
to access the DOC, writes to the data register will result in data bytes’ being loaded into the
DOC register indicated by the Address Pointer registers. If the Sound Control register is set
to access the Sound RAM, writes to the data register will result in data bytes’ being loaded
into the Sound RAM address indicated by the Address Pointer registers.

Chapter 5 Apple IIGS Sound 105

Address Pointer registers

When accessing the Sound RAM (bit 6 set to 1 in the Sound Control register), the Address
Pointer registers point to the address of the next byte in Sound RAM. The high-byte Address
Pointer register contains the high 8 bits of the 16-bit address, and the low-byte register
contains the low 8 bits.

When accessing the Sound DOC (bit 6 set to 0 in the Sound Control register), the high-byte
Address Pointer register is ignored by the DOC, and the low-byte Address Pointer register
points to the DOC register to be written or read from. Figure 5-3 shows the format of the
Address Pointer registers.

= Figure 5-3 Address Pointer registers

Low byte at $CO3E

71615 4]3|2|1]0

High byte at $CO3F

5014 |1312{11110] 9| 8

Write operation

To write to the DOC or Sound RAM:
1. Set the Sound Control register
o to point to either the RAM or the DOC
01 to enable or disable auto-incrementing in the Address Pointer registers

2. Then load the Address Pointer register with the beginning location into which data are to
be written. Do this by writing the high byte of the address to the high-byte Address
Pointer register at $CO3F, and the low byte of the address to the low-byte Address
Pointer register at $CO3E.

Data now written to the data register will be transferred by the Sound GLU into the
corresponding memory (if you are accessing RAM) or DOC register (if you are accessing the
DOC).

If the auto-increment feature is enabled, the Address Pointer register is automatically
incremented to the next higher location or the register with the next higher address after each
write to the data register.

106 Apple lIGs Hardware Reference

¢ Note: Do not use indexed addressing mode when reading data from or writing data to the
data register. Indexed addressing mode generates a false read, which will cause the sound
GLU to lose synchronization.

Read operation

The Sound RAM read operation is the same as the write operation with one exception:
Reading from the data register lags by one read cycle. For example, if you want to read 10
bytes from the Sound RAM, select the RAM by setting the Sound Control register bit and
enabling auto-incrementing. Then set the Address Pointer register to the starting address and
read the data register 11 times, discarding the first byte read.

The Ensoniq DOC

The Apple IIGs uses the Ensoniq 5503 Digital Oscillator Chip, a programmable sound
synthesizer chip with 32 independent oscillators, volume control, and digitizing capability.
The synthesizer uses 64K of RAM dedicated to sound waveform storage, and interfaces with
the 65C816 microprocessor via the Sound GLU. Commands and data are transferred to the
DOC via the GLU, and sound is output via the built-in speaker, external speaker jack, or
molex connector on the main logic board.

The DOC contains three registers common to all oscillators. These are

» the Oscillator Interrupt register ($E0)

» the Oscillator Enable register ($E1)

= the Analog-to-Digital (A/D) Converter register (SE2)

Also, each oscillator has one of each of the following registers dedicated to it:
s an Oscillator Control register

= an Oscillator Data register

= a Volume register

= a Frequency Low register

= 2 Frequency High register

= a Wavetable Size register

= 2 Wavetable Pointer register

Chapter 5 Apple IIGS Sound

107

DOC registers common to all oscillators

The Oscillator Interrupt register (SE0)

This register contains the status of the DOC interrupt request (IRQ) pin and the number of
the oscillator that generated the interrupt, if any. When an oscillator reaches the end of a
wavetable and the enable interrupt (ED) bit for that oscillator has previously been set, the
IRQ line and bit 7 of the Oscillator Interrupt register are then set, and the register number is
entered in bits 1 through 5 of the Oscillator Interrupt register. Figure 5-4 shows the format of
the Oscillator Interrupt register. Table 5-3 gives a description of each of the bits.

= Figure 5-4 Oscillator Interrupt register at $EO

Oscillator number
|
r N

716 5]4]3]2]1]0

Interrupt occurred J

Reserved; do not modify

Reserved; do not modify —

The Oscillator Enable register (SE1)

The Oscillator Enable register controls the number of oscillators that are operating at a
particular time. To enable 1 or more oscillators, multiply the desired quantity of oscillators
(up to 32) by 2 and enter the number in this register at $E1. You may enter any number from 2
to 64, which will enable the corresponding oscillators in sequential order. (Low-numbered
oscillators cannot be skipped in order to enable a higher-numbered one.) A minimum of 1
oscillator is always enabled, which is also the reset default.

108 Apple IIGs Hardware Reference

= Table 5-3 Bits in the Oscillator Interrupt register

Bit Value Description
7 1 No oscillator has generated an interrupt.
0 One of the 32 DOC oscillators has generated an interrupt;

this bit reflects the status of the IRQ line.
- Reserved; do not modify,

5-1 —~ Interrupting oscillator number; when one of the 32 DOC
oscillators generates an interrupt, the number of the
oscillator is contained here.

0 - Reserved; do not modify.

The A/D Converter register (SE2)

The A/D Converter register contains the output value of the successive-approximation
analog-to-digital converter. An analog-input signal can be sampled at pin 1 of the 7-pin molex
connector (J25). The result of the conversion resides in the A/D Converter register at the
completion of the conversion. Reading this register at $E2 initiates the 31-microsecond
conversion process. If this register is read before the end of the conversion process, the
value will be lost and a new conversion will begin.

DOC registers for individual oscillators

Table 5-4 contains the addresses for the registers dedicated to the individual oscillators.

The Oscillator Control registers (SA0-$BF)

Each Oscillator Control register controls all functions of each oscillator, including

= which of eight optional external analog multiplexer channels an oscillator will use
= whether or not an oscillator may generate an interrupt

» the oscillator’s mode of operation

Chapter 5 Apple IIGS Sound

109

= Table 5-4 DOC register addresses

Frequency Frequency Wavetable Wavetable

Oscillator Low High Volume Data Pointer Control Size
number register register register register register register register
$00 $00 $20 $40 $60 $80 $A0 $CO
$01 $01 $21 $41 501 $81 SA1 5C1
$02 $02 $22 $42 $62 $82 $A2 $C2
$03 $03 $23 $43 $63 $83 SA3 $C3
$04 $04 §24 $44 $64 $84 $A4 $C4
$05 $05 §25 §45 $65 $85 $AS $C5
$06 $06 $26 $406 $60 $86 $AO $Co
$07 $07 $27 $47 $67 $87 A7 $C7
$08 $08 $28 $48 $68 $88 SA8 $C8
$09 $09 $29 $49 $69 $89 $A9 $C9
$0A $0A $2A $4A $0A $8A SAA $CA
$0B $0B $2B $4B $6B $8B $AB $CB
$0C $0C $2C $4C $6C $8C $AC $CC
$0D $0C $2D $4D $6D $8D $AD $CD
SOE $OE $2E $4E $OE $8E $AE $CE
$OF SOF $2F $4F $OF $8F SAF SCF
$10 $10 $30 $50 $70 $90 $B0 $DO
$11 $11 $31 $51 §71 $91 $B1 $D1
§12 $12 $32 $52 §72 §92 $B2 $D2
$13 $13 $33 $53 §73 $93 $B3 $D3
$14 $14 $34 $54 $74 $94 $B4 $D4
$15 §15 $35 $55 §75 $95 $B5 $D5
$16 $16 $306 $56 §76 $96 $BO $DO
$17 $17 $37 $57 $77 $97 SB7 $D7
$18 $18 $38 $58 $78 §98 $B8 $D8
$19 §19 $39 $59 $79 $99 $B9 $D9
$1A $1A $3A $5A $7A $9A $BA $DA
$1B $1B $3B $5B $7B $9B $BB $DB
$1C $1C $3C $5C §7C $9C $BC $DC
$1D $1D $3D $5D $7D $9D $BD $DD
$1E* S1E $3E $5E S7E $OE $BE $DE
S1F* $1F $3F $5F S7F $OF $BF SDF

*

These oscillators are reserved for system use. Use of these oscillators by the user may result in a system
crash.

The oscillator may function in one of several modes:

m Free Run mode: The oscillator begins at the beginning of the wavetable and repeats the
same wavetable. The oscillator will halt when the halt bit is set or when a 0 is encountered
in the table data.

110 Apple IIGS Hardware Reference

e |

= One Shot mode: The oscillator begins at the beginning of the wavetable, stepping
through it only once, and stopping at the end of the table.

m Sync mode: You enable Sync mode by selecting even/odd pairs of oscillators (a lower
even-numbered oscillator paired with an adjacent higher-numbered oscillator). When the
even-numbered oscillator begins its wavetable, the odd-mate oscillator will synchronize
and begin its wavetable simultaneously.

m Swap mode: Uses even/odd pairs of oscillators (a lower even-numbered oscillator paired
with an adjacent higher odd-numbered oscillator). The enabled oscillator pair runs in One
Shot mode. When it reaches the end of its wavetable, it resets its accumulator to 0, sets
its halt bit, and clears the halt bit of its mate.

Figure 5-5 shows the format of this register. Table 5-5 gives a description of each bit.

= Figure 5-5 Oscillator Control register

Channel address

Oscillator interrupt enable —

Oscillator mode —J

Halt(ed) oscillator —

The Oscillator Data registers ($60-$7F)

The Oscillator Data registers are read-only registers and contain the last byte read by an
oscillator from the wavetable.

The Volume registers ($40-$5F)

The Volume registers contain an oscillator’s volume value. The current wavetable data byte is
multiplied by the 8-bit volume value to obtain the oscillator final output level.

Chapter 5 Apple IIGS Sound 111

Table 5-5

Bits in the Oscillator Control register

Bit

Value

Description

7-4

2-1

112

Apple 1IGS Hardware Reference

Channel address bits: Only the low three bits are supported
by the hardware. Bits 7-4 determine to which
demultiplexer output channel (provided by optional
external demultiplexer hardware) this oscillator will be
directed. Connecting a demultiplexer to the 7-pin molex
connector will allow you to use up to eight separate sound
channels. Figure 5-10 shows an example of how the external
demultiplexer circuitry may be implemented.

Interrupts enabled: An interrupt flag will be set in the
DOC’s Oscillator Interrupt register and the DOC will assert
the TRQ signal when an oscillator generates an interrupt.
Interrupts disabled: The interrupt flag will not be set in the
Oscillator Interrupt register when an oscillator generates an
interrupt.

Oscillator mode: Select the mode desired by setting these
two bits as follows:

Bit 2 Bit 1 Mode
0 0 Free Run
0 1 One Shot

1 0 Sync

1 1 Swap

Halted oscillator: This is a read/write bit. To halt the
oscillator, set this bit. Certain modes (Sync, Swap) will hait
the oscillator and set this bit automatically after
completion.

Running oscillator: This bit is cleared if the corresponding
oscillator is currently enabled.

The Frequency High and Frequency Low registers ($00-$3F)

The Frequency High registers and Frequency Low registers are concatenated to create a 16-
bit value for each oscillator. This frequency value determines the speed at which the
wavetable is read from memory. This speed indirectly determines the frequency of the
output signal at the speaker. The relationship between output signal frequency, wavetable
scan rate, and the Frequency High and Frequency Low register values is

SR

Output frequency = 2(17+—RES)* Fir

894.886KHz

where the scan rate SR =Wand where RES is the resolution value in the Wavetable

register, Fyy, is the 16-bit frequency value concatenated from the Frequency High and
Frequency Low registers, and OSC is the number of enabled oscillators.

The Wavetable Size registers (SC0-$SDF)

The Wavetable Size registers control the size of the individual wavetable each oscillator will
access. Figure 5-6 shows the format of the Wavetable Size register. Table 5-6 gives a
description of each bit. The size of the wavetable for each oscillator can vary from 256 bytes
to 32K in eight discrete steps, as shown in Table 5-7.

= Figure 5-6 Wavetable Size register

Address bus
Tablcle size resolution
1

r N N
7161514 3]2(1]0

Reserved; do not modify J

Reserved; must be 0

Chapter 5 Apple 1IGS Sound

113

= Table 5-6

Bits in the Wavetable Size register

Bit Value Description

7 - Reserved; do not modify.

0 0 Extended addressing: The Apple IIGS uses only 64K for the
Sound RAM and has no high memory bank available.
Therefore, this bit must always be set to 0.

5-3 - Table size: The wavetables may extend up to 32K in size,
but in discrete steps only. Wavetables must begin on a
page boundary ($0C00, $0D00, and so forth). Table 5-7
shows the possible sizes of wavetables. Unused locations
within a wavetable should begin with a minimum of eight
zeros. Otherwise, the oscillator will not halt when it
encounters these bytes and will interpret them as data.

2-0 - Address bus resolution: The wavetable is played back by
using every byte as data, or only intermittent bytes, as
desired. The address resolution bits determine whether or
not every byte is used during playback. Figure 5-7 shows
how these bits effect wavetable scanning.

= Table 5-7 Wavetable size determination

Bit

5 4 3 Table size

0 0 0 256

0 0 1 512

01 0 1024

0 1 1 2048

1 0 0 4096

1 0 1 8192

1 1 0 16384

1 1 1 32768

114 Apple IIGS Hardware Reference

T S

The Wavetable Pointer registers ($80-$9F)

This set of registers contains the beginning page number of the oscillator’s wavetable. All
wavetables must begin on a page boundary (that is, the first byte of the page) and cannot
wrap around to low memory addresses. The value in this register is used in the final address
calculation.

Figure 5-7 shows how the final address that is used to obtain the next wavetable data byte is
calculated. The bits from the accumulator and the Wavetable Pointer register are
concatenated in a varying ratio depending on the table size and address bus resolution
parameters in the Wavetable Size register. The final address is used by the DOC to fetch the
next wavetable data byte for conversion to an analog value by the digital-to-analog
converter.

Making sound with the DOC

The oscillators in the DOC are not oscillators in the traditional sense; they do not generate a
signal or tone. Instead, each oscillator acts as an address generator, pointing to a data byte
in Sound RAM that, together with others, represents a signal that is to be generated. The data
byte is then converted to an analog voltage by the digital-to-analog converter. These
sequential series of voltages make up the output signal, which is then filtered and amplified
and used to drive a speaker.

The data residing in the Sound RAM can be placed there either byte by byte, by manually
building the wavetable (trial-and-error method works best here; try a sound, and modify it as
you prefer), or by filling memory with a digitized input signal.

The waveshape of the signal is determined by the actual values of the data bytes that make
up the wavetable. The pitch of the signal is determined by the speed with which the
wavetable is scanned by the DOC. This scan rate is the value contained in the Wavetable Size
register of each oscillator, and is arrived at by using several factors. Figure 5-8 shows the
process used to calculate the scan rate. As shown in Figure 5-7 and Figure 5-8, each address’s
calculation is determined by the Frequency High and Frequency Low registers and the
Wavetable Size register (made up of table size and address bus resolution data) associated
with each oscillator.

Chapter 5 Apple IIGS Sound 115

» Figure 5-7 Final address calculation in the Wavetable Size register
Final address
Al5 Al4 Al3 Al2 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0
Table size Pointer register bits Accumulator bits Egscﬁ?ti%
A23 A22 A2 A20 Al19 A18 Al7 A6 1 1 1
A2 - through ---------- AIS| 1 1 0
A2l —-mmmmmoe- through —--------- Al4] 1 0 1
A0 -----m - through —--------- Al3[1 0 0
256 | P7 P6 PS P4 P3 P2 Pl PO| pjg oo through —————————- al o 11
Al ———---———- through ---------- AlTf 0 1 0
Al7 —=————— - through —---------- A0 0 0 1
Al —====—=——- through —--------- A9l 0 0 O
A23 ————m e through ---------- AISI 1 1 1
STP I I — through —------ P1
Al —m——mmm through ---------- AB[O 0 0
5 through ————=---——. A4 111
1024 P7 —=—-- through -—--- P2 ‘ E : ' : .
Alp ——=mmmmm e through ---------- A710 0 0
A23 —— e through ------—-—- A3l 1T 1 1
2048 P7--- through -—- P3 : : . : E :
L H N — through —=--——--—-—- A6l o 0o
A2} —mmmm through —--------~ Al2f 1 1 1
4096 P7 through P4 : : : : : :
AlD === through —-------—- AS |0 0 0
A2 —mmmmmmmm e through ---------- All 1 1 1
8192 P7 PG PS5 ; E E E E E
AlG —mmmmmm oo through ---------- A4l 0 0 0
A23 == through ---------- A.l() 111
16384 | P7 P6| . O R
Alp ————mmm oo through ----------— A310 0 0
A23 === e through ---------- A1 1 1
32768 p7 E E E E E ;
AlG —=mmm e through ---=------— A210 0 0
116 Apple IIGs Hardware Reference

= Figure 5-8 Generating the sound addresses

Value from
Frequency High and
Frequency Low registers

24-bit adder

i

Address Pointer register 24-bit accumulator

Wavetable register

Address bit multiplexer -

Table size Resolution

/

16-bit address
output buffer

The address calculation is performed like this: Each time an oscillator is updated with a new
address, the 16-bit value from the Frequency High and Frequency Low registers is added to
the 24-bit accumulator by the adder. The 24-bit result is also passed to the address bit
multiplexer and is used to form the final 16-bit Sound RAM address. The resolution value in
the Wavetable Size register determines which of the 16 bits within the accumulator is used in
the address calculation. The table-size value in the Wavetable Size register also determines
how many accumulator bits will be used to calculate the final address.

The 32 oscillators are time-domain multiplexed, that is, the DOC services each oscillator in
its turn. With all oscillators enabled, the DOC takes approximately 38 microseconds to
service all 32. Figure 5-9 shows an example of a signal resulting from the combined output of 4
oscillators. This signal is then filtered, or smoothed, to remove the high-frequency
components, leaving only waveforms in the audio-frequency range.

Chapter 5 Apple IIGS Sound

117

Digitized soundwaves are built by using consecutive data bytes (known collectively as a
wavetable) in dedicated Sound RAM. Each of the 32 oscillators reads these bytes in
sequential order at a speed that is programmable. This speed determines the frequency at
which the waveform is reproduced, while the actual data in RAM determine the shape of the
output waveform. The volume for each oscillator is also programmable.

= Figure 5-9 Combined output of time-domain multiplexed oscillators

Oscillator ~ Oscillator ~ Oscillator Oscillator
A B C D

I | l [

118 . Apple IIGS Hardware Reference

Sound input and output specifications

The 7-pin molex connector is used for sound input and output to and from the Apple IIGS.
The electrical specifications for these inputs and outputs are listed in Table 5-8.

= Table 5-8 Sound input and output electrical specifications for connector J-25

Signal Pin Maximum Units

A/D converter input 1 2.5 Volts peak-to-peak, full-
scale conversion

Input impedance 1 3,000 ohms

Analog GND 2 - -

Analog output 3 =510 +5 Volts peak-to-peak

Output load 3 10,000 ohms, minimum

Channel address 0 4 1 LS TTL load

Channel address 1 5 1 LS TTL load

Channel strobe* 0 1 LS TTL load

Channel address 2 7 1 LS TTL load

*

Channel strobe goes low when the channel address is valid.

Figure 5-10 shows an example of a demultiplexer circuit that can be designed to produce
stereo (two-channel) sound, using the analog output from the DOC. The sound output at pin
3 will be demultiplexed according to addresses supplied by pins 4, 5, and 7. These addresses
are those specified by each Oscillator Control register. A more complex circuit could handle
as many as eight unique sound channels. For correct sound-channel demultiplexing, be sure to
set the channel bits in each Oscillator Control register to the appropriate value.

Chapter 5 Apple IIGS Sound 119

= Figure 5-10 A two-channel demultiplexer circuit

[
I
Analog output avay.
from o 3 J(;fs MC 14052 Decoder
connector A \ M,
—‘/ X0
+
X1 x W\ -
LIS L Channel 1
v X2 + output to
TLOT2 low-pass
® flter
YO
Y1
v W
/CSTRB Y3
from pin 6
A Y W -
B — Channel 2
CAO + output to
from pin 4* TLO72 }fiw-pass
ilter

Further reading

To learn more about synthesized music and sound, you may want to read this book:

Chamberlin, Hal. Musical Applications of Microprocessors. Hasbrouck Heights, NJ, Berkeley,
CA: Hayden Books, 1985.

120 Apple IIGS Hardware Reference

Chapter 6 The Apple Desktop Bus

The Apple Desktop Bus (ADB) is a method for connecting input devices
(such as a keyboard or a mouse) with the Apple IIGS computer. The
Apple Desktop Bus consists of the ADB GLU, the ADB microcontroller
chip, and the Apple Desktop Bus cables. Figure 6-1 shows the
relationship of the ADB components in the Apple 1IGS computer.

121

= Figure 6-1 ADB components in the Apple 11GS

Slots 1 2 3 4 5 0 7

- (- = : . -
Game
port Multiplexer
of [
0l
oE
NEA)58 Slotmaker El J J
0000 U 0} U L
Game
1/0 Digital-to-analog
| converters
Megall | Analog RGB
FPI | Vid video
| Vido e
T Mega Il 128K RAM Graphics
| Controller
Buffers I NTSC
| Rea}l-tilr(ne] generator
cloc
| Composite
| video
|
l
T “l (256K Apple 11GS
ADB only) | Sound
| GLU Retrofit GLU
|| ’ Serial | keypad
65C816 FPI | Communications
128K or | Controller WM
micro- RAM
| controller
= L
| Serial Serial \©00000600 Retrofit II])S(O)Iélq
128K or | portA port B Disk keyboard
: | (250K Apple 1IGS [
256K ROM i port only) — Audio
Me’mo.ry | ©—— amplifier Speaker
expansion External
slot | speaker

The ADB microcontroller controls devices on the bus by receiving commands from the
65C816 microprocessor, and then sending appropriate ADB commands to and receiving data
from the input devices on the bus. Microcontroller commands (those received from the
65C816) are located in ROM. Figure 6-2 shows the relationship of ADB components in the
host computer to the bus devices (keyboards, mouse devices, and so on).

122 Apple IIGS Hardware Reference

For the remainder of this chapter, the computer will be referred to as the host, and the input
devices (for example, a keyboard or a mouse) connected to the bus as devices.

= Figure 6-2 ADB components

Optional
devices

Keyboard

ADB Devices

Mouse

& Note: To keep compatibility with future Apple II products using the ADB, use the Apple
Desktop Bus Tool Set in ROM. Directly accessing some of the ADB registers may cause
the system to crash. (For more information on the ADB Tool Set, refer to the Apple IIGS
Toolbox Reference.)

The input bus

All input devices share the input bus with the host. This bus consists of a 4-wire cable and
uses 4-pin mini-DIN jacks at the host and at each device. Figure 6-3 shows the pin
configuration of the ADB connectors and Table 6-1 lists the description of each pin. ADB
devices may use the +5-volt power supplied by the bus, but must not draw more than 500 mA

Chapter 6 The Apple Desktop Bus 123

i

total for all devices. All devices are connected in parallel, using the signal, power, and ground
wires. Cables should be no longer than 5 meters, and total cable capacitance should not
exceed 100 picoFarads per meter.

= Figure 6-3 Mini-DIN connector pin configuration used in the ADB

Host connector

= Table 6-1 Pin assignments of the ADB connectors

Pin Description

1 Data

2 Reserved

3 +5-volt power supply at 500 mA for all devices
4 Ground

The keyboard

The keyboard uses the Apple Desktop Bus to communicate with the processor. All input
devices are connected to the ADB and are controlled by the keyboard microcontroller. This
controller supports reading of the keyboard by standard Apple IT application programs.

The Apple IIGS keyboard has automatic repeat, which means that if you press any key longer
than you would during normal typing, the character code for that key will be sent
continuously until you release the key. The speed at which the key repeats, and the delay
before it repeats, may be set from the Control Panel. (See the section “Modifier Key
Register,” later in this chapter, for more information.)

124 Apple lIGs Hardware Reference

Any number of modifier keys may be held down and an additional key pressed will be
recognized. This is called n-key rollover. The alphanumeric keys do not have this ability. Any
two alphanumeric keys pressed simultaneously will be recognized. A third key pressed will
not be recognized. This is called 2-key lockout.

Apple TIGS computers manufactured for sale outside the United States have slightly different
standard keyboard arrangements. The different keyboards are shown in Appendix B.

ADB and the upgraded Apple Ile

The Apple IIGS can be used with a standard Apple Ile keyboard when an Apple Tle is
upgraded with an Apple IIGS logic board. The Apple Ile keyboard is then used as the primary
input device, rather than the ADB keyboard. The Apple Ile keyboard is read just like the
standard keyboard in an Apple Ile, and is not subject to the Apple Desktop Bus protocols.

Reading the keyboard

The ADB microcontroller generates all 128 ASCII codes, so all the special character codes in
the ASCII character set are available. Application programs obtain character codes from the
keyboard by reading a byte from the keyboard data location shown in Table 6-2 (the
Keyboard Data register).

= Table 6-2 Keyboard Data locations

Location
Hex Dec Description
$C000 49152 Keyboard Data register and strobe
$C010 49168 Any-key-down flag and clear-strobe switch

Your programs can get the code for the last key pressed by reading the Keyboard Data
register located at $C000. Table 6-2 gives this location in two different forms: The
hexadecimal value, indicated by a preceding dollar sign ($), is used in assembly language; the
decimal value is used in Applesoft BASIC.

The low-order seven bits of the byte at the keyboard data location contain the character
code; the high-order bit of this byte is the strobe bit, described below.

Chapter 6 The Apple Desktop Bus

125

Your program can find out whether any key is down, except the Reset, Control, Shift, Caps
Lock, Command, and Option keys, by reading from location 49152 ($§C000). The high-order
bit (bit 7) of the byte you read at this location is called any-key-down; it is 1 if a key is down
and 0 if no key is down. The value of this bit is 128; if a BASIC program gets this information
with a PEEK; the value is 128 or greater if any key is down, and less than 128 if no key is
down.

The strobe bit is the high-order bit of the Keyboard Data register. After any key has been
pressed, the strobe bit is high. It remains high until you reset it by reading or writing at
location $C010. This location is a combination flag and soft switch; the flag tells whether any
key is down, and the switch clears the strobe bit. In this case, it doesn’t matter whether the
program reads or writes, and it doesn’t matter what data the program writes: The only action
that occurs is the resetting of the keyboard strobe. (See the Apple IIGS Firmware Reference
for information on firmware for reading the keyboard.)

¢ Note: Any time you read the any-key-down flag, you also clear the keyboard strobe. If
your program needs to read both the flag and the strobe, it must read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until another key is pressed. Even
after you have cleared the strobe, you can still read the character code at the keyboard
location. The data byte has a different value, because the high-order bit is no longer set, but
the ASCII code in the seven low-order bits is the same until another key is pressed. Appendix
D contains the ASCII codes for the keys on the keyboard.

There are several special function keys that do not generate ASCII codes. For example,
pressing the Control, Shift, or Caps Lock key directly alters the character codes produced by
the other keys. In the Apple IIGS, you can determine the state of these modifier keys by
reading the modifier key register within the ADB microcontroller, described later in this
chapter.

The Control-Command-Reset key combination is different from all other key combinations
on the ADB keyboard in that it generates a special key code. When the ADB microcontroller
detects the reset key combination, the program currently running in memory is halted and the
system asserts the RESET line and restarts the computer. This restarting process is called the
reset routine. (To read about the reset routine, see the Apple 1IGS Firmware Reference.)

126 Apple 1IGs Hardware Reference

The ADB microcontroller

The ADB microcontroller is an intelligent controller IC that oversees the Apple Desktop Bus.
The M50740 microcontroller uses a superset of the 6502 instruction set, and contains 96 bytes
of RAM and 3K of ROM. The ADB microcontroller operates asynchronously, transmitting
commands and data to and receiving data from the bus devices. To ensure compatibility
with future versions of ADB, use the ADB commands in the ROM toolbox to communicate
with the ADB. To find out how to use the toolbox in the system ROM, see the Apple IIGs
Toolbox Reference.

The ADB GLU

The ADB General Logic Unit (GLU) works together with the ADB microcontroller to form an
intelligent input-device interface. The ADB GLU, located on the main logic board, uses two
independent data buses that serve as a communications interface between the ADB
microcontroller and the system bus. This interface is accomplished by using multiple internal
read/write registers to store keyboard data, key modifiers, mouse X and Y coordinates,
command data, and status information.

The ADB GLU registers

The ADB GLU contains five data and control registers. These registers are used for storing
keyboard data and commands, key modifiers, mouse X and Y coordinates, and status
information. The registers are

s ADB Command/Data register ($C026)
» Keyboard Data register ($C000)

» Modifier Key register (§C025)

m Mouse Data register (§C024)

» ADB Status register ($C027)

All registers except the status registers have a status flag that is set to 1 when the register is
written to, and cleared to 0 when the register is read. Each of the data registers also has an
interrupt flag that generates system interrupts, if interrupts are enabled. These status and
interrupt flags are located in the status register. These registers are described in the following
sections.

Chapter 6 The Apple Desktop Bus 127

ADB Command/Data register

The ADB Command/Data register is a dual-function register used to communicate with ADB
devices. To send a command to a device on the bus, write the command byte to this register
at address $C026. To check the status of an ADB device, read this register at the same
address. Figure 6-4 shows the format of the ADB Command/Data register when it is read.
Table 6-3 gives a description of each bit.

= Figure 6-4 ADB Command/Data register at $C026

7161543 2[1]0
J ' -

Response/status
Abort/CTRLSTB flush

‘Reset key sequence

Buffer flush key sequence —

Service request valid —

Number of data bytes returned —

Keyboard Data register

The Keyboard Data register contains the ASCII value of the last key pressed on the
keyboard. The high bit is set when a new key has been pressed. Figure 6-5 shows the format
of this register. Table 6-4 gives a description of each bit.

= Figure 6-5 Keyboard Data register at $C000

ASCII code
]

7161543 2(1]0

|

Key strobe

128 Apple 1IGS Hardware Reference

= Table 6-3 Bits in the ADB Command/Data register ‘J

Bit Value Description

7 1 When this bit is 1, the ADB microcontroller has received a
response from an ADB device previously addressed.
0 No response.
6 1 When this bit is 1, and only this bit in the register is 1, the j

ADB microcontroller has encountered an error and has
reset itself. When this bit is 1 and bit 4 is also 1, the ADB
microcontroller should clear the key strobe (bit 7 in the
Keyboard Data register at $C000).

0 _
5 1 When this bit is 1, the Control, Command, and Reset keys
have been pressed simultaneously. This condition is usually
used to initiate a cold start up.
0 Reset key sequence has not been pressed.
4 1 When this bit is 1, the Control, Command, and Delete
keys have been pressed simultaneously. This condition
will result in the ADB microcontroller’s flushing all internally |
buffered commands. E
0 Buffer flush key sequence has not been pressed. |
3 1 When this bit is 1, a valid service request is pending. The f
ADB microcontroller will then poll the ADB devices and i
determine which has initiated the request. 1
0 No service request pending. 3
2-0 - The number of data bytes to be returned from the device ’

is listed here. |

= Table 6-4 Bits in the Keyboard Data register

Bit Value Description

7 - This bit is 1 when a key has been pressed, and indicates
that the ASCII value in bits 6 through 0 are valid. This bit
must be cleared after reading the data by reading or
writing to any address from $C010 through $CO1F.

6-0 - ASCII data from the keyboard.

Chapter 6 The Apple Desktop Bus 129

Modifier Key register

The Modifier Key register contains bits that reflect the status of the modifier keys. These
keys include the standard Shift, Control, Command, and Caps Lock keys, as well as keys on
the numeric keypad. Figure 6-6 shows the format of this register. Table 6-5 gives a
description of each bit.

= Table 6-5 Bits in the Modifier Key register

Bit Value Description
7 1 When this bit is 1, the Command key has been pressed.
0 When this bit is 0, the Command key has not been pressed.
0 1 When this bit is 1, the Option key has been pressed.
0 When this bit is 0, the Option key has not been pressed.
5 1 When this bit is 1, the modifier key latch has been
updated, but no key has been pressed.
0 -
4 1 When this bit is 1, a numeric keypad key has been pressed.
0 When this bit is 0, a numeric keypad key has not been
pressed.
3 1 When this bit is 1, a key is being held down.
0 When this bit is 0, no key is being held down.
2 1 When this bit is 1, the Caps Lock key has been pressed.
0 When this bit is 0, the Caps Lock key has not been pressed.
1 1 When this bit is 1, the Control key has been pressed.
0 When this bit is 0, the Control key has not been pressed.
0 1 When this bit is 1, the Shift key has been pressed.
0 When this bit is 0, the Shift key has not been pressed.

Mouse Data register

The ADB mouse, when moved, generates movement data that are transmitted to the host.
These data, along with the mouse button status, are available in the Mouse Data register.
Figure 6-7 shows the format of this register. Table 6-6 gives a description of each bit.

& Note: Read this register only twice in succession. The first read returns
Y-coordinate data, and the second read returns X-coordinate data. Reading this register
an odd number of times will result in a random movement of the cursor.

130 Apple IIGs Hardware Reference

= Figure 6-6 Modifier Key register at $C025

716

I
SN
(O8]
ro
[
()

Apple key down J
Option key down
Updated modifier key latch

Keypad key down J

Repeat function —

Caps Lock key down —

Control key down —

Shift key down —

= Figure 6-7 Mouse Data register at $C024

Mouse movement

7160514 3[2]1]0

Current button status J

Delta movement sign bit

= Table 6-6 Bits in the Mouse Data register

Bit Value Description
7 1 Current mouse status: When this bit is 1, the mouse button
is up.
0 When this bit is 0, the mouse button is down.
0 1 Delta sign bit: if this bit is 1, the delta value is negative.
0 If this bit is 0, the delta value is positive.

5-0 - The relative mouse movement data are returned here.

Chapter 6 The Apple Desktop Bus

131

ADB Status register
The ADB Status register, located at $C027, contains flags that relate to mouse and keyboard

data and status. Figure 6-8 shows the format of the ADB Status register. Table 6-7 gives a
description of each bit.

= Figure 6-8 ADB Status register at $C027

7161514312110

Mouse Data register full J
Mouse interrupt enable/disable

Data register full

Data interrupt enable/disable —

Keyboard Data register full —

Keyboard interrupt enable/disable —

Mouse X- and Y-Coordinate registers available —

Command register full —

= Table 6-7 Bits in the ADB Status register

Bit Value Description
7 1 When this bit is 1, the Mouse Data register at $C024 is full
(read-only bit)
0 When this bit is 0, the Mouse Data register is empty.
0 1 When this bit is 1, the mouse interrupt is enabled

(read/write bit), and an interrupt is generated when the
Mouse Data register contains valid data.

0 When this bit is 0, the mouse interrupt is disabled.
5 1 When this bit is 1, the Command/Data register contains
valid data (read-only bit)
0 When this bit is 0, the Command/Data register contains no
valid data.
4 1 When this bit is 1, the Command/Data interrupt is enabled

(read/write bit), and an interrupt is generated when the
Command/Data register contains valid data.

132 Apple IIGS Hardware Reference

= Table 6-7 Bits in the ADB Status register (Continued)

Bit Value Description
0 When this bit is 0, the data interrupt is disabled.

3 1 When this bit is 1, the Keyboard Data register is full (read-
only bit). This bit is set when the Keyboard Data register is
written to.

0 When this bit is 0, the Keyboard Data register is empty.

This bit is cleared when the Keyboard Data register is read
or the ADB Status register is read.

2 1 When this bit is 1, the keyboard data interrupt is enabled
(read/write bit), and an interrupt is generated when the
Keyboard Data register contains valid data

0 When this bit is 0, the keyboard data interrupt is disabled.
1 1 When this bit is a 1, mouse X-coordinate data is available
in the Mouse Data register (read-only bit)
0 When this bit is a 0, mouse Y-coordinate data is available
in the Mouse Data register.
0 1 Command register full (read-only bit). This bit is set when
the Command/Data register is written to.
0 Command register empty. This bit is cleared when the

Command/Data register is read.

Bus communication

The host communicates with the devices on the bus by sending commands and/or data to a
device. A device may respond to commands by sending data back to the host. This form of
communication uses strings of bits, each making up a packet. A data transfer or transaction
consists of a complete communication between the host and a device; for example, it may
be a command packet sent by the host to request data from a device, followed by a data
packet sent from the device to the host. Depending upon the type of command sent by the
host, the device will send two to eight data bytes back.

Figure 6-9 shows how duty-cycle modulation represents bits on the bus. A low period of less
than 35 percent of the bit-cell time is interpreted as a 1. A low period of greater than 65
percent of the bit-cell time is interpreted as a 0.

Chapter 6 The Apple Desktop Bus

133

= Figure 6-9 Bit representation via duty-cycle modulation

Duty cycle <35% Duty cycle >65%
of bit-cell time of bit-cell time
represents 1 represents 0

o —

Commands and global signals

Communications on the bus are of two types: Commands that are sent by the host to a
specific device, and global signals that instruct all devices to perform a predefined function.
The four commands in the command set are

= Listen

s Talk

s Device Reset
s Flush

Certain signals, however, are neither commands nor data transactions. These are special
signals that the host or a device uses to broadcast status globally to all devices on the bus.
There are four signals in the global signal group:

s Attention
s Sync
m Global Reset

m Service Request

The following paragraphs describe each of these device commands and global signals.

Transactions

A transaction is a bus communication between the host and a device, or vice versa. A
command (Listen, Talk, Device Reset, Flush) initiates a transaction. A transaction consists

134 Apple IIGs Hardware Reference

of a command packet sent by the host followed by a data packet of several bytes by either
the host or a device. A command packet consists of

= an attention/sync signal
= one command byte

= one stop bit

A data packet consists of
a start bit

L}
= two to eight (8-bit) data bytes
= one stop bit

Figure 6-10 shows a typical transaction on the Apple Desktop Bus, consisting of a command
packet followed by a data packet.

= Figure 6-10 A typical transaction

Stop-to-start
Command packet time 1 data packet

I I l
() 1)

- -

Attention
and Sync

|

0’1 1 0 0 0

Address 5

LISTEN

Register 0

Stop

Start

2-8 bytes
of data

Stop

To indicate the end of the command packet, the command ends with a stop bit after the
last command bit-cell. Then the transaction is complete and the host releases its control of
the bus. (The bus is always floating in a high state until a device or the host initiates a
transaction.) The identical scheme is used for the data packet.

Note that the stop-bit-to-start-bit time is critical; the host requires this minimum
turnaround delay to allow for internal overhead. Table 6-8 lists the timing maximum and
minimum parameters for ADB signals.

Chapter 6 The Apple Desktop Bus 135

= Table 6-8 ADB timing specifications

Parameter Minimum ‘Maximum Unit

Bit-cell time 70 130 microseconds

“0" low time 00 70 percent of bit-cell time
“1” low time 30 40 percent of bit-cell time
Attention ~ 560 1040 microseconds

Global Reset 2.8 5.2 milliseconds

Sync 00 70 percent of bit-cell time
Service request 140 260 microseconds

Stop bit to start bit time 140 260 microseconds
Commands

A command is sent by the host to one specific device address. Only the host can send
commands. There are four commands: The Talk command is used to acquire data from a
device; the Listen command is used to place data in a device register or to get a device to
perform some new function; the Device Reset command reinitializes the device; and the
Flush command is device specific.

A command is an 8-bit word that has a specific syntax (as shown in Table 6-9):

= A 4-bit field that specifies the address of the desired device. (The addresses range from 0
through 15 [address bits 3 through 0].)

s A 4-bit command and register address code.

¢ Note: To allow for future expansion of the command structure, Apple Computer, Inc. has
reserved a group of instructions that are currently treated as no-ops (no operation
performed). Use of commands not listed will result in possible incompatibility with
future Apple products.

Talk

The Talk command is a request of the device to transmit the contents of one of the device’s
registers (0 through 3). When the host addresses a device to Talk, the device must respond
with data before the host times out (does not receive data within the specified time). The
selected device performs its data transaction and releases the bus.

136 Apple IIGs Hardware Reference

= Table 6-9 Command byte syntax

Command Register
Device address code code

Bit 7 6 5 4 3 2 1 0 Command

X x x x 0 0 0 0 Send Reset
Ay Ay Ay Ay 0 0 0 1 Flush
X X x x 0 0 1 0 Reserved
X X x x 0 0 1 1 Reserved
X X x x 0 1 X X Reserved
Ay Ay Ay A 1 0 rp ry Listen
Ay Ay Ay Ay 1T 1 1 o1y Talk

Note: x = ignored; r = register number; A3 through A0 = bits 11 through 8 of register 3.

Listen

The Listen command is a request of the device to store the data being transmitted in one of
the internal registers (0 through 3). When the host addresses a device to Listen, the device
receives the next data packet from the host and places it in the appropriate register. After
the stop bit following the data is received, the transaction is complete and the host releases
the bus. If the addressed device detects another command on the bus before it receives any
data, the original transaction is immediately considered complete.

Send Reset
When a device receives a Send Reset command, it will clear all pending operations and data,

and will initialize to the power-on state. The Send Reset is not device specific; it is sent to
all devices on the bus simultaneously.

Flush

This is a device-specific command that will clear all pending commands from the device.

Broadcast signals

Broadcast signals are transmitted on the bus but do not address any specific device. This
way, all devices receive the signals and respond simultaneously. There are four broadcast
signals: Attention, Sync, Global Reset, and Service Request.

Chapter 6 The Apple Desktop Bus 137

£

Attention and Sync

The start of every command is indicated by a long low Attention signal that the host sends on
the bus. This signal is followed by a short high Sync pulse that signals the beginning of the
initial bus timing. The falling edge of the sync pulse is used as a timing reference, after which
the first command bit follows. Figure 6-11 shows the format of the Attention and Sync
signals.

= Figure 6-11 Attention and Sync signals

Attention Sync

l l
(1)

Global Reset

When the bus is held low for a minimum of 2.8 milliseconds, a Global Reset is initiated. Only
the host may issue this signal, which forces all bus devices to reset. Note that the Global
Reset signal differs from the Device Reset command: The Device Reset command addresses
one specific device, and resets that device. The Global Reset signal is received by all devices
and forces all devices to reset.

Service Request

A Service Request signal is used to inform the host that a device requires service, as, for
example, when there are data to send to the host. Only a device can issue a Service Request.
Following any command packet, a requesting device can signal a Service Request by holding
the bus low during the low portion of the stop bit of the last command transaction. Holding
the bus low in this manner lengthens the stop by a minimum of 140 microseconds beyond its
normal bit-cell boundary. Figure 6-12 shows the format of the Service Request signal.

138 Apple IS Hardware Reference

= Figure 6-12 Service Request

Normal stop bit cell

—

L J
|
Stop bit extended by
140 microseconds, which
indicates a Service Request

A device will signal a Service Request repeatedly until it is served. When a device has
requested service (at which point the host does not know which device sent the request),
the host will poll each of the devices by sending a Talk register 0 command (discussed later in
this chapter), beginning with the last active device. Only the device that has data to send
(the device that sent the Service Request) will respond to the Talk command.

When the host commands the requesting device to Talk, the device is considered served and
does not send a Service Request signal again until it needs to be served again. The host can
enable and disable the ability of a device to send a Service Request at any time. ADB mouse
devices are prohibited by the Apple IIGS from issuing Service Requests. All other ADB
devices may issue Service Requests, as long as the device has not been prohibited from
sending a Service Request. (See description of register 3, later in this chapter.)

Error conditions

If the bus level remains low for a significant time period, all devices reset themselves and
output a 1. If a command transaction is incomplete by staying high beyond the maximum
bit-cell time, all devices ignore the command and wait for an Attention signal.

Chapter 6 The Apple Desktop Bus

139

Apple Desktop Bus peripheral devices

All devices on the Apple Desktop Bus are slaves; only the host (the computer) may send
commands. Devices transmit on the bus only after they have been requested by the host.

A device that receives a Talk command (and has data to send) sends the data and then
releases control of the bus. If a device has been addressed but has no data to send, it does
not respond and allows the host to time out (waiting for data, none arrives). The host may
also send a Listen command to the addressed device followed by data in a separate packet.

Device registers

All devices have four locations to receive data. These are

= Register 0

Talk: Data register, device specific
Listen: Data register, device specific
m Register 1
Talk: Data register, device specific
Listen: Data register, device specific
m Register 2
Talk: Data register, device specific
Listen: Status or data, device specific
s Register 3
Talk: Status information, including the device address handler
Listen: Status information, including the device address handler
Register 0

Register 0 is a data register and contains data that will be sent to the host in response to a
Talk register 0 command. Figures 6-13 and 6-14 show the format of register 0 as used in a
keyboard and a mouse device, and Tables 6-10 and 6-11 describe each bit in these registers.

140 Apple IIGs Hardware Reference

= Figure 6-13 Keyboard register 0

51141131 12]11

0098716543210

—

Key released 4' J
Keycode 2

Key released —

Keycode 1 —J

= Table 6-10 Bits in keyboard register 0

Bit Value Description
15 1 Key released indicator: When this bit is 1, the key
represented by keycode 2 is up.
0 When this bit is 0, the key represented by keycode 2 is
down.
14-8 - Keycode 2: The 7-bit ASCII value of the last key pressed.
7 1 Key released indicator: When this bit is 1, the key
represented by keycode 1 is up.
0 When this bit is 0, the key represented by keycode 1 is
down.
0-0 - Keycode 1: The 7-bit ASCII value of the last key pressed.

Chapter 6 The Apple Desktop Bus

141

= Figure 6-14 Mouse register 0

Bl | B3R 1110]98|7]065]4]32]1]0
J R / N J
Button pressed
Moved up
Y move value —
Alwaysal —
Moved right —
X move value —

= Table 6-11 Bits in mouse register 0

Bit Value Description

15 1 Button pressed indicator: When this bit is 1, the mouse
button is up.

0 When this bit is 0, the mouse button is down.

14 1 Movement indicator: When this bit is 1, the mouse has
moved up along the Y axis.

0 When this bit is 0, the mouse has moved down along the Y
axis.

13-8 - Y movement value: This field contains the value of the
relative mouse movement along the Y (vertical) axis.

7 - Alwaysa 1.
6 1 Movement indicator: When this bit is 1, the mouse has
moved left along the X axis.
0 When this bit is 0, the mouse has moved right along the X
axis.
5-0 - X movement value: This field contains the value of the
relative mouse movement along the X (horizontal) axis.

142 Apple IIGs Hardware Reference

Register 1

Register 1, like register 0, is a data register, but it is device specific. The function of this
register is not defined for use by the ADB protocol, but it may be used by the application
program for any data function.

Register 2

This register is a data register and is device specific. In response to the Talk register 2
command, the device will send the contents of this register onto the bus. In response to the
Listen register 2 command, the device will store the data sent to the device, as defined by
the device’s specification.

Register 3

This register is a status and command register that contains a handler code and the device
address. The host may change the contents of this register with a Listen register 3 command.
Figure 0-15 shows the format of register 3, and a description of each bit follows in Table 6-12.

= Figure 6-15 Device register 3

S| 14|13 12)11[10] 98] 7|6

I
S

(S8}
o
—
()]

Reserved: must be 0 ‘J
Exceptional event

Service Request enable

Reserved; must be 0 —

Device address —

Device handler —

Chapter 6 The Apple Desktop Bus 143

= Table 6-12 Bits in device register 3

Bit Value Description
15 - Reserved; must be 0.
14 1 Exceptional event, device specific. In the ADB keyboard,
this bit indicates that the Reset key has been pressed.
0 No exceptional event has occurred.
13 1 Service Request enable: When this bit is 1, the device may

transmit a Service Request. See the section “Service
Request Enable/Disable,” later in this chapter, for more
details on this function.

0 When this bit is 0, the device may not transmit a Service
Request.
12 - Reserved; must be 0.
11-8 - Device address: This field contains the device’s unique bus
address. The possible addresses are listed in Table 6-14.
7-0 - Device handler: This field contains the special handler

code that defines the function of the device. See the next
section, “Device Handlers,” for a list of unique handlers.

Device handlers

Device handlers provide a means for a device to function in more than one manner. By
sending a new handler ID, the device can be instructed to perform a new function.

There are two kinds of handlers: reserved, and all others. There are four reserved device
handlers, listed in Table 6-13. Other handlers may be used for special device functions, but
new device handlers defined by third-party developers must first be registered with Apple
Computer, Inc.

Upon receiving a reserved device handler, the device will immediately perform the new
function. The device will not store the reserved handler in register 3; only device-defined
handler codes are stored. All unrecognized handlers are ignored.

Device addresses

Each peripheral device is preassigned a 4-bit command address, which identifies its device
type. For example, all relative devices, such as a mouse, power up at address 3. Most devices
have movable addresses. That is, the host can assign a new address to the device. The host

144 Apple 1IGS Hardware Reference

s Table 6-13 Reserved device handlers

Handler Definition

SFF Initiates a self-test in the device.

SFE As Listen register 3 data, instructs the device to change the address field to
the new address sent by the host if no collision has been detected.

$FD As Listen register 3 data, instructs the device to change the address field to
the new address sent by the host if the activator is pressed.

$00 As Listen register 3 data, instructs the device to change the address and
enable fields to the new values sent by the host.

$00 As data sent in response to a Talk register 3 command, indicates that the

device failed a self-test.

must assign a new address when two devices have the same default address (such as two
mouse devices); one must be moved to a new address. A device will always default to its
assigned address upon power-on or after it detects an ADB reset. Currently, eight addresses
are predefined or reserved. The other eight addresses are available for movable devices. This
means that ADB can support up to nine mouse devices, keyboards, or graphics tablets at the
same time, each one with a unique address. Table 6-14 lists all the possible device addresses.

= Table 6-14 Device addresses

Device Device
Address class type Example
$00 Reserved - -
501 Reserved - -
$02 Encoded devices ~ Movable Keyboard
$03 Relative devices Movable Mouse
$04 Absolute devices ~ Movable Graphics tablet
$05 Reserved - -
$06 Reserved - -
$07 Reserved - -
$08 Soft address Movable Any
$09 Soft address Movable Any
$0A Soft address Movable Any
$OB Soft address Movable Any
$0C Soft address Movable Any
$0D Soft address Movable Any
SOE Soft address Movable Any
- SOF Soft address Movable Any
Chapter 6 The Apple Desktop Bus 145

Collision detection

All devices must be able to detect collisions. If a device is attempting to output a bit and
the data line is forced low by another device, it has lost a bit in collision with the other
device. If another device sends data before the device is able to assert its start bit, it has
lost a collision. The losing device should immediately stop transmitting and preserve the
data that were being sent. A device sets an internal flag if it loses a collision.

¢ Note: Devices using internal clocks that operate within 1 percent should attempt to
assert their start bit at a random time within the limits of the bus turnaround time.

To aid in collision detection, the address field of register 3 is replaced with a random number
in response to a Talk register 3 command. A device will change its device address to this new
address as long as it has not detected a collision. A device that has detected a collision will
not change its address during the next Listen register 3 command.

At the systems level, a host can change the addresses of normal devices by using this
technique. By issuing a Talk register 3 command and following it with a Listen R3 command
with a new address in bits 8 to 11 of the data packet, the host moves all devices that did not
detect a collision to the new address. Typically, only one device will not detect a collision.
This technique can be repeated at new addresses until the response to the Talk register 3
command is a time-out (no response). This process can be used to identify and relocate
multiple devices of the same type after system initialization.

A normal device may have an optional activator on it. The activator can be a special key on a
keyboard or a mouse button. At the application level, addresses can be changed by the
host’s displaying a message requesting a user to use the activator (hold down a key). By using
the Listen register 3 command, the host can move the device with the activator pressed to a
new address. This method can be used by an application program to identify and locate
individual devices in multi-user applications. Also, certain reserved handlers are used to
facilitate both address-changing methods.

Service Request enable/disable

It is possible to control the ability of a device to transmit a Service Request. To disable a
device’s ability to send a Service Request, set bit 12 in register 3 to 0; to enable it, set this bit
to 1. This feature is useful in an application where the Service Request response time in a
polled system is longer than desired. When only specific devices are required for an
application, the others can be disabled.

146 Apple IIGs Hardware Reference

e ¥

1 MB Apple IIGS

The 1 MB Apple IIGs main logic board includes a redesigned ADB microcontroller. This IC
has RAM expanded to 96 bytes, and ROM expanded to 4K. The new ROM code supports
sticky keys and the ADB mouse functions. This information is provided here for developers
who may have need to provide these functions in a third-party ADB device. For complete
instructions on using sticky keys and ADB mouse, see the Apple IIGs Ouner’s Guide.

Sticky keys

The new ADB microcontroller provides a new feature useful to anyone who is limited to
pressing only one key at a time. By enabling sticky keys, any combination of modifier keys
(Shift, Command, Option, Control) can be achieved by pressing the keys sequentially rather
than simultaneously. Table 6-15 lists these functions and the action required to implement
each.

= Table 6-15 Sticky keys functions

Function Action

Enable sticky keys Press Shift key five times

Enable a modifier key Press the modifier key once

Lock down modifier key Press the modifier key twice

Disable a modifier key Press the modifier key a total of three times
Disable sticky keys Press Shift key five times

ADB mouse

The ADB microcontroller provided with the 1 MB Apple 1IGS includes the ADB mouse
feature. This feature allows users to use the numeric keypad on the ADB keyboard to control
mouse functions. Figure 6-16 shows the key functions, and Table 6-16 lists the mouse
functions and the keys that implement these functions.

Chapter 6 The Apple Desktop Bus

147

= Figure 6-16 ADB mouse keypad

T 2nd T 2nd set
button || button || incre-
lock release || ment

2nd
\ f / mouse
) button
¢ mouse
button »
button lock
lock release

s Table 6-16 ADB mouse functions

Function Action

Enable ADB mouse. Press Shift-Command-Clear key sequence.
Click mouse button. Press keypad 5.

Lock down mouse button. Press keypad 0.

Release mouse button. Press keypad decimal.

Click second mouse button. Press keypad “-".

Lock down second button. Press keypad “=".

Release second button. Press keypad “/”.

Set cursor increment. Press keypad “*” followed by 0-9.
Set cursor default. Press keypad “*” twice.

Disable ADB mouse. Press the Clear key.

148 Apple IIGs Hardware Reference

Chapter 7 Built-in I/0 Ports and Clock

The Apple IIGS has several means for data input and output. The primary
output device is the video output, covered in Chapter 4. Keyboards and
mouse devices provide input. Another means of I/O available is the I/O
expansion slots, covered in Chapter 8.

The disk port, the two serial ports, and the game port provide
additional 1/0. Another I/O device, although internal to the Apple IIGS,
is the real-time clock (RTC). This chapter describes the disk-port
connector, serial ports, the game port, and the real-time clock in the
Apple 11GS. Figure 7-1 shows the Apple I1IGS block diagram and position
of these I/0 devices within the system.

P e

= Figure 7-1 I/O components of the Apple 11Gs described in this chapter
Slots 1 2 3 4 5 0 7
- - : - - - -
Gam |
port Multiplexer g
goacs s = z = d‘ %
J J 3 = =
= J = 5 d
Slotmaker J = ‘] = =
1B B B B R RS
Digital-to-analog
I converters
Analog RGB
-; Vid video
: 1deo 00000000
| V'dﬁqw } amplifiers ©000000
I Mega Il 128K RAM Graphics
' Controller
Buffers i NTSC
, generator
| Composite
| video
l
I
I - (256K Apple 11GS
I I
ADB only) Sound
I GLU Retrofit GLU
| serial I keypad
65C816 FPI | |Communications
128K or I Controller WM
| micro- RAM
| controller |
g |
Dog fa3]s}
I | .
l . L 0000000000 . Ensomq
| Serial Serial 000000000 kRegOﬁ[d DOC
ort A ort B Disk €yboar
B ;P P oo (250K Apple 1G5 | | Id‘
Memory | Apple only) — ar?lglilf(i)er Speaker
expansion | Desktop External
slot | Bus speaker

The disk port

The Apple I1GS uses a disk-port connector, located on the back of the computer, which is
compatible with all 3.5-inch Apple II disk drives and most 5.25-inch Apple II disk drives. The
firmware routines within the ROM make communicating with the disk drives reliable and
consistent.

150

Apple 1IGS Hardware Reference

A Warning Using means other than documented entry points and Apple IIGs ROM
firmware routines to communicate with the disk drives is extremely
dangerous. Not only do you run the risk of crashing the operating system,
but the potential for damaging data on your system disk is high. It is
recommended that you use firmware calls when accessing all disk devices
connected to your Apple 1IGS. a

Apple II compatibility

The Apple IIGS uses the same disk drive interface as the Apple Ilc and Ile. Programs written
for both of these earlier computers will run on the Apple IIGS. The firmware recognizes
ProDOS block device calls and SmartPort interface calls to both the Apple UniDisk™ 3.5-
inch and Apple DuoDisk® 5.25-inch disk drives.

To find out how to use the ProDOS block device calls, see the ProDOS 8 Technical Reference
Manual. To find out how to use the SmartPort interface calls, see the Apple IIGS Firmware
Reference.

The disk-port connector is located at the rear of the Apple 1IGS case. It is a 19-pin

The disk-port connector
connector. Figure 7-2 shows the connector. Table 7-1 gives a description of each pin.
1
|

s Figure 7-2 Disk-port connector

DOO®OOOOOOO
®BOO®GHBOGOO

Chapter 7 Built-in I/O Ports and Clock 151

= Table 7-1

Pins on the disk-port connector

Pin Signal Description

1,23 GND Ground reference and supply
4 3.5DISK 3.5- or 5.25-inch drive select
5 -12V ~12-volt supply

0 +5V +5-volt supply

7,8 +12V +12-volt supply

9 DR2 Drive 2 select

10 WRPROTECT Write-protect input

11 Phase (Motor phase 0 output

12 Phase 1 Motor phase 1 output

13 Phase 2 Motor phase 2 output

14 Phase 3 Motor phase 3 output

15 WREQ Write request

16 HDSEL Head select

17 DR1 Drive 1 select

18 RDDATA Read data input

19 WDATA Write data output

A Warning The power connections on this disk port are for use by the disk drive

only. Do not use them for any other purpose. Any other use of these
connections may damage the computer's voltage regulator. a

The Disk Interface register

The Disk Interface register (5C031) serves as a control register for the disk drive. By writing
to this register, you select the type of disk drive being used and the side of the disk to be
accessed.

This register uses only two bits, which are both cleared on reset. When the Disk Interface
register is read, 0's are returned in the unused positions (bits 5 through 0). Figure 7-3 shows
the format for this register. Descriptions of each bit are listed in Table 7-2.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

152 Apple IIGs Hardware Reference

= Figure 7-3 Disk Interface register at $C031

Reserved; do not modify
!
- N

7161514 3]2]1]0

Read/write head select J ‘

Disk drive select

= Table 7-2 Bits in the Disk Interface register

Bit Value Description
7 1 Read/write head select bit: A 1 in this position selects
head 1.
0 A 0 selects head 0.
0 1 Disk drive select bit: A 1 in this position selects 3.5-inch
disks.
0 A 0 selects 5.25-inch disks.
5-0 - Reserved; do not modify.
The IWM

The disk-port interface is enhanced by the Integrated Woz Machine (IWM), which simplifies
the microprocessor’s task of reading and writing serial group-code recording (GCR) encoded
data to and from the disk drives. To perform disk operations, the microprocessor simply
reads or writes control and data bytes to or from the IWM.

A Warning Writing directly to the IWM is extremely dangerous. Not only do you run
the risk of crashing the operating system, but the potential for damaging
data on your system disk is high. It is recommended that you use
firmware calls when accessing all disk devices connected to your
Apple 1IGS. a

The IWM contains several typical disk support circuits, which make writing data to the disk
possible. These are the discriminator, the phase-locked loop, the data separator, and the
write current circuitry.

Chapter 7 Built-in I/O Ports and Clock 153

The IWM contains several registers that allow you to control disk access:

s the Mode register

» the Status register

the Handshake register

» the Data register

The IWM is mapped as an internal device with soft switches at addresses $COEO through
$COEF. These are the same addresses as in the Apple Ilc. Table 7-3 shows these locations and

their functions.

= Table 7-3 Disk-port soft switches

Address Description

$COEO Stepper motor phase 0 low

$COE1 Stepper motor phase 0 high
$COE2 Stepper motor phase 1 low

$COE3 Stepper motor phase 1 high
$COE4 Stepper motor phase 2 low

$COE5 Stepper motor phase 2 high
$COE6 Stepper motor phase 3 low

$COE7 Stepper motor phase 3 high
$COE8 Drive disabled

$COE9 Drive enabled

$COEA Drive 0 select

$COEB Drive 1 select

$COEC Q6 select bit low

$COED Q0 select bit high

$COEE Q7 select bit low

$COEF Q7 select bit high

Soft switches Q6 and Q7 are select bits for accessing registers within the IWM. By setting or
clearing the Q6, Q7, and spindle motor switches, you may read or write to one of the internal

IWM registers, as listed in Table 7-4.

154 Apple IIGs Hardware Reference

n Table 7-4 IWM states

Spindle
Q7 Q6 motor Operation
0 0 1 Read Data register
0 1 X Read Status register
1 0 X Read Handshake register
1 1 0 Write Mode register
1 1 1 Write Data register

The drive-enable soft switches and the drive-select switches control the state of the disk-
select signals DR1 and DR2 located at the disk-port connector. Table 7-5 shows how these
soft switches determine the state of the disk-select signals.

= Table 7-5 Controlling the disk select signals

Soft switches Disk port signals
$COE8 $COE9 $COEA $COEB DR1 DR2
1 - - - 0 0
- 1 1 - 1 0
- 1 - 1 0 1

The Mode register

The Mode register is a write-only register and contains bits that control the state of the IWM.
These bits are shown in Figure 7-4. Table 7-6 gives a description of these bits. To write to the
Mode register, set the appropriate soft switches required to access the Mode register. (See

Table 7-4.) Writing to any odd IWM address (§COE0 through $COEF) will write to this register.

& Note: Writing to the Mode register will succeed only after the one-second timer has
timed out.

Chapter 7 Built-in I/O Ports and Clock

155

Table 7-6 Bits in the Mode register

Bit Value Description

7 - Reserved; do not modify.

6-5 - Reserved; always write 0.

4 1 8-MHz read-clock speed selected.

0 7-MHz read-clock speed selected. Set this bit to 0 for all
Apple 1IGs disk accesses.

3 1 Bit-cells are 2 microseconds; used in accesses to Apple
3.5-inch drives.

0 Bit-cells are 4 microseconds; used in accesses to SmartPort
devices and all Apple 5.25-inch disk drives.

2 1 One-second timer is disabled.

0 One-second timer is enabled. When the current disk drive
is deselected, the drive will remain enabled for 1 second if
this bit is set.

1 1 Asynchronous handshake protocol selected; for all except
Apple 5.25-inch Apple disk drives.

0 Synchronous handshake protocol selected; for Apple
5.25-inch disk drives.

0 1 Latch mode is enabled; read-data byte remains valid for
full byte time (16 microseconds if using 2-microsecond
bit-cells; 32 microseconds if using 4-microsecond
bit-cells).

0 Latch mode is disabled; read-data byte remains valid for

Re

156

Figure 7-4 Mode register

approximately 7 microseconds.

71615

T

served; do not modify —I

Reserved; must be 0 J

Data rate —
Bit cell size —
1-second timer enable —

Synchronous/asynchronous mode —

Latch mode enable —

Apple IIGs Hardware Reference

The Status register

The Status register is a read-only register and contains bits that refleet the current state of
the disk interface. These bits are shown in Figure 7-5. Table 7-7 gives a description of each
bit. To read from the Status register, set the appropriate soft switches required to access the
Status register. (See Table 7-4). Reading from any even IWM address (SCOEO through $COEF)
will read from this register.

= Figure 7-5 Status register

Same as Mode register bits 0-4
- :)

7165|432 1]0

Sense input J

Reserved; do not modify

Drive enabled

= Table 7-7 Bits in the Status register

Bit Value Description

7 - Sense input line from disk device. Multifunction input; use
determined by disk device. (Used as a write-protect sense
in some Apple disk drives.)

0 - Reserved; do not modify.

5 1 Either drive 1 or drive 2 is selected and the drive motor is on.
0 No drive is currently selected.

4-0 1 Same as Mode register bits 4-0. (See Figure 7-4 and

Table 7-6).

Chapter 7 Built-in I/O Ports and Clock

157

The Handshake register

The Handshake register is a read-only register that contains the status of the IWM when
writing out the data to the disk drive. The format of this register is shown in Figure 7-6.
Table 7-8 gives a description of the bits. To read from the Handshake register, set the
appropriate soft switches required to access the Handshake register. (See Table 7-4.)
Reading from any even IWM address (SCOEO through SCOEF) will read from this register.

= Figure 7-6 Handshake register

Reserved; do not modify
|
e N

71605 4]3]2]1]0

Read/Write data register ready 4}

Write state

= Table 7-8 Bits in the Handshake register

Bit Value Description
7 1 Read/write data register is ready for data.
0 Read/write data register is full.
6 1 No write underrun has occurred; the last write to the disk
drive was successful.
0 A write underrun has occurred; a recent data byte was
missed and not written to the disk.
5-0 1 Reserved; do not modify.

158 Apple IIGS Hardware Reference

The data register

The Data register is a dual-function register. Depending on the state of soft switches Q6 and
Q7 (Table 7-3), this register functions as a Read-Data register and a Write-Data register. See
Table 7-4 for the state of these bits when reading from and writing to this register. To read
from the Data register, set the appropriate soft switches required to read the Data register.
(See Table 7-4.) Reading from any even IWM address ($COEQ through SCOEF) will read from
this register. To write to the Data register, set the appropriate soft switches required to
write to the Data register. (See Table 7-4.) Writing to any odd TWM address (SCOEO through
$COEF) will write to this register.

The serial ports

The Apple IIGS has two RS-232-C serial ports located at the back of the computer, which
provide synchronous and asynchronous serial communications. Each of these ports may be
used to drive a modem, printer, plotter, or other serial device, or as an AppleTalk local area
network port. These serial ports are called channel A and channel B, and are virtually identical
except for the different addresses assigned to each. Only the firmware differs in the way the
routines utilize the hardware to provide RS-232 or AppleTalk protocol. Figure 7-7 shows the
pin organization of the serial-port connectors. Table 7-9 gives a description of the signals.

¢ Note: Remember that firmware for serial ports A and B is located in the ROM space for
slots 1 and 2. Because the AppleTalk firmware operates through either port A or port B,
one of the slots (1 or 2) must be available to the AppleTalk firmware. See the Apple I1IGS
Owner’s Guide for details on choosing serial-port functions from the Control Panel.

= Figure 7-7 Pin configuration of a serial-port connector

Chapter 7 Built-in I/O Ports and Clock

159

= Table 7-9 Pins on a serial-port connector

Pin Signal Description

1 DTR Data terminal ready

2 HSKI Handshake in

3 TX Data - Transmit data -

4 GND Ground reference and supply
5 RX Data - Receive data —

6 TX Data + Transmit data +

7 GPI General purpose input

8 RX Data + Receive data +

Noncompatibility with ACIA

Previous Apple I computers use an asynchronous communications interface adapter (ACIA)
chip, either built into the computer (as in the Apple Ilc), or on a peripheral card (as used in
the Apple Ile), to control the serial ports in the computer. Due to the great difference in
internal architecture of the ACIA and the Serial Communications Controller (SCC) chip,
previous Apple II programs that do not use the serial-port firmware calls but rather
communicate directly to the ACIA will be incompatible with the Apple IIGS serial ports.
Existing Apple II programs not using the serial-port firmware calls must be rewritten, using
firmware routines or SCC commands.

The Serial Communications Controller

The Apple IIGS uses a Zilog 8530 Serial Communications Controller (SCC) chip to control the
two serial ports. The SCC is a programmable, dual-channel, multiprotocol data
communications chip as well as a parallel-to-serial/serial-to-parallel converter and controller.
The SCC has on-chip baud-rate generators and phase-locked loops, which reduce the need for
additional support circuitry. Figure 7-8 is a block diagram showing major functional
segments of the Zilog SCC.

160 Apple IIGs Hardware Reference

= Figure 7-8

Zilog Serial Communications Controller chip (Reproduced by permission.

© 1986 Zilog, Inc. This material may not be reproduced without the

consent of Zilog,

Inc.)

CPUI/O

1/0 Data Buffer|

Internal Data Bus

Upper Byte Lower Byte
Time Constant Time Constant

16-Bit Down:Coumcr

BR Generator ——|
Input

Receive Receive WR? Sync WRG Sync

__________ Register Register
Data Error
FIFO FIFO

I——l +2 BR Generator T
Output { } Transmit | Shift Register | Start Bit
o Receive
= __Hunt Mode (Bisync) Error
. Logic
L ¥ 08I Transmit MUX

> To Other Channel

I Iﬂansmil Data I Internal TXD
Final
J ; xmux [P

Sync Register
& Zero Delete

Receive’
3 Bits Sync Register [
(8 Bits) Sync-

) CRC

Internal
TxD

NRZI Decode

CRC Delay
Register
(3 Bits)

CRC Result

Zero Insert
(5-Bits)
CRC Generator

NRZI Encode

& 2-Bit Delay

Transmit
Clock

RxD‘rl 1-Bit ITI MUX

DPLL DPLL DPLL Output

BR Generator Output:

Receive Clock

DPLL Output————— 4 !
Clock
IRC—— %

|—— Transmit Clock
——— DPLL Clock

J|——> BR Generation Clock

(Oscillator)

To communicate with the SCC, you must address one SCC Command register and one SCC
Data register for each of the two serial ports. These register addresses are listed in

Table 7-10.

= Table 7-10

SCC Command and SCC Data register addresses

Register Channel A

Channel B

SCC Command
SCC data

$C039
$C03B

$C038
$CO3A

Chapter 7 Built-in I/O Ports and Clock 161

Through these two registers, you can access the 9 SCC read registers and the 15 SCC write
registers for each channel. These registers and their functions are listed in Table 7-11 and
Table 7-12. Figure 7-9 is a diagram showing the major data paths within the Zilog SCC.

Table 7-11 SCC read register functions

Read register Functions
0 Transmit/receive buffer status
External status
1 Receive status
Residue codes
Error conditions
2 Interrupt vectors
3 Interrupt pending bits (channel A)
8 Receive buffer
10 Transmit and receive status
12 Baud-rate generator time constant, low byte
13 Baud-rate generator time constant, high byte
15 External status
Interrupt control
¢ Note: If you wish to use the SCC without utilizing the firmware routines, you must

162

initialize and communicate with the SCC in proper sequence. Details of how to program
the SCC may be found in the Z8530 SCC Serial Communications Controller Technical
Manual (September, 1980), from Zilog Corporation.

Apple 1IGS Hardware Reference

s Table 7-12

SCC write register functions

Write register

Functions

0

10

11
12
13
14

15

Register pointers
CRC initialization
Mode resets

Interrupt conditions
Wait/DMA request control

Interrupt vector

Receive byte format
Receive CRC enable

Transmit/receive clock rate, sync byte format

Transmit byte format
Transmit CRC enable

Sync/SDLC byte format
Transmit buffer

Master interrupt bits
Reset bits
Interrupt daisy chain

Transmit/receive control
Data encoding format

Receive and transmit clock control
Baud-rate generator time constant, low byte
Baud-rate generator time constant, high byte

Baud-rate generator control
Phase-locked loop control
Echo and loopback

External interrupt control status

Chapter 7 Built-in I/O Ports and Clock

163

T

= Figure 7-9 Data paths in the Zilog SCC (Reproduced by permission. © 1986 Zilog,
Inc. This material may not be reproduced without the consent of
Zilog, Inc.)
Baud Rate
Generator
A
> }Serial Data
2| Channel A }Cﬁnnel Clocks
Internal > Sync
Ch: 1A :
Control R;r;;fe’rs — Wait/Request
Logic
. lat——
Discrete
4 :> Control & Status |~ Modem, DMA, or
Address/ ” - A = | other Controls
Data Bus /O < Internal Bus
Control <z> Discrete [)
-
N :> Control & Status [~ - Modem, DMA, or
B ———— other Controls
Interrupt | Interrupt Channel B
Control] Control Registers
Lines — Logic - }Serial Data
:> Channel B }Channel Clocks

HH

+5V GND PCLK

l——
l«—> Sync

— Wait/Request

The game 1/0 port

All Apple II computers have a game 1/O port to which joysticks or hand-controls can
connect. These controls allow users to provide mechanical input to a game program, which

analyzes these inputs and responds accordingly.

Four digital switch inputs (SW0 through SW3) are provided, as well as four analog hand
control inputs (PDLO through PDL3) and four digital annunciator outputs (ANO through AN3).

The following sections describe these inputs and outputs in detail.

164

Apple 1IGs Hardware Reference

Game 1/0

The Mega II supports hand-control inputs PDLO through PDL3 and switch inputs SW0 through gg
SW3. These inputs are available through the 16-pin DIP game connector (J21) located below ;
slot 4, and through the 9-pin connector (J9) that is located at the rear panel. Annunciator
outputs ANO through AN3 are provided by the Slotmaker IC and are available only through
the 16-pin DIP connector. Unlike previous Apple II computers, the STROBE output is not
available on the game I/O port. Figure 7-10 shows the two Apple IIGs game connectors.
Table 7-13 lists the locations of the game 1/O signals.

= Figure 7-10 Game I/O connectors

OGO
OEOOO

= Table 7-13 Game 1/0O signals

J2a P Signal Description
1 2 +5V +5 volts ‘
27 SW0 Switch input 0
3001 SW1 Switch input 1 J
i 6 SW2 Switch input 2 1
5 - +5V +5-volt pullup !
0 5 PDLO Analog input 0
7 4 PDL2 Analog input 2
8 3 GND Power and signal ground
9 - SW3 Switch input 3
10 8 PDL1 Analog input 1
11 9 PDL3 Analog input 3 ;
2 - AN3 Digital output 3 |
13 - AN2 Digital output 2
14 - AN1 Digital output 1
15 - ANO Digital output 0
16 - N.C. No connection

Chapter 7 Built-in I/O Ports and Clock 165

The hand-control signals

Several inputs and outputs are available at the 16-pin IC connector on the main logic board:
four 1-bit inputs, or switches (SW0 through SW3); four analog inputs (PDL0 through PDL3);
and four 1-bit outputs (ANO through AN3). You can access all these inputs and outputs from
your application program. Note that the SW3 input is new to the Apple IIGS.

Ordinarily, you connect a pair of hand controls to the 16-pin connector. The rotary controls
use two analog inputs, and the push buttons use two 1-bit inputs. But you can also use these
inputs and outputs for many other jobs. For example, two analog inputs can be used with a

two-axis joystick. Figure 7-10 shows the connector pin numbers.

The Apple Desktop Bus will accept ADB hand controls, joysticks, and graphics tablets as well
as those keyboards and mouse devices specifically designed for the ADB. The ADB
microcontroller handles mouse and keyboard input devices transparently; that is, simply
reading the standard locations will return the current values of these devices. See Chapter 6
for more information.

Annunciator outputs: The four 1-bit outputs (ANO through AN3) are called annunciators.

Each annunciator can be used to turn a lamp, a relay, or some similar electronic device on and
off.

A Warning When driving a device with the annunciator outputs, be sure not to load
any one output with more than one standard TTL load. a

Each annunciator is controlled by a soft switch, and each switch uses a pair of memory
locations. These memory locations are shown in Table 7-14. Any reference to the lower
address of an address pair turns the corresponding annunciator off; a reference to the higher
address turns the annunciator on. You can determine the state of only one annunciator, AN3.
To do this, read the RDDHIRES switch at location $C064 and test bit 5. If this bit is a 0, then
AN3 is cleared. If this bitis a 1, then AN3 is set.

Annunciator 3 serves a dual purpose in the Apple IIGs: It also serves as a switch, allowing you
to toggle between two display modes. Refer to Chapter 4 for more information about the
role of annunciator 3 in video. Table 7-14 shows the annunciator memory locations.

Switch inputs: The four 1-bit inputs (SWO through SW3) can be connected to the output of
another electronic device or to a push button. When you read a byte from one of these
locations, only the high-order bit—bit 7—is valid information; the rest of the byte is
undefined. The soft switch locations that reflect the state of these switch inputs are 49249
through 49251 ($C060 through $C063), as shown in Table 7-15.

166 Apple I1GS Hardware Reference

= Table7-14 Annunciator memory locations

Annunciator Address
Number Pin* State Hex Dec
0 15 Off $C058 49240

On $C059 49241
1 14 Off $COSA 49242
On $C05B 49243
2 13 Off $C05C 49244
On $C05D 49245
3 12 off $CO5E 49246
On $COSF 49247

Pin numbers given are for the 16-pin IC connector on the circuit board.

Analog inputs: The four analog inputs (PDL0 through PDL3) are designed for use with
150,000-ohm variable resistors or potentiometers. The variable resistance is connected
between the +5-volt supply and each input, so that it makes up part of a timing circuit. The
circuit changes state when its time constant has elapsed, and the time constant varies as the
resistance varies. Your program can measure this time by counting in a loop until the circuit
changes state, or times out.

Before a program can read the analog inputs, it must first reset the timing circuits. Accessing
memory location 49264 ($C070) does reset these circuits. As soon as you reset the timing
circuits, the high bits of the bytes at locations 49252 through 49255 (§C064 through $C067)
are set to 1. Within about 3 milliseconds, these bits will change back to 0 and remain there
until you reset the timing circuits again. The exact time each of the four bits remains high is
directly proportional to the resistance connected to the corresponding input. If these inputs
are open—no resistances are connected—the corresponding bits may remain high
indefinitely.

To read the analog inputs, use a program loop that resets the timers and then increments a
counter until the bit at the appropriate memory location changes to 0. High-level languages,
such as BASIC, also include convenient means of reading the analog inputs: Refer to your
language manuals.

Chapter 7 Built-in I/O Ports and Clock

167

Summary of secondary I/0 locations

Table 7-15 shows the memory locations for all of the built-in 1/0 devices except the
keyboard and the video display and other primary 1/0 locations. As explained eatlier, some
soft switches should be accessed only by means of read operations; those switches are
marked.

= Table 7-15 Secondary 1/0 memory locations

Address
Soft switch Hex Dec Definition
SPKR $C030 49200 Toggle speaker (read only).
CLRANO $C058 49240 Clear annunciator 0,
SETANO $C059 49241 Set annunciator 0.
CLRAN1 $CO5A 49242 Clear annunciator 1.
SETAN1 $CO5B 49243 Set annunciator 1.
CLRAN2 $C05C 49244 Clear annunciator 2.
SETAN?2 $COSD 49245 Set annunciator 2.
CLRAN3 $COSE 49246 Clear annunciator 3.
SETAN3 $COSF 49247 Set annunciator 3.
BUTN3 $C060 49248 Read switch 3 (read only).
BUTNO $C061 49249 Read switch 0 (read only).
BUTN1 $C062 49250 Read switch 1 (read only).
BUTN2 $C063 49251 Read switch 2 (read only).
PADDLO $C064 49252 Read analog-input 0.
PADDLI $C065 49253 Read analog-input 1.
PADDL2 $C006 49254 Read analog-input 2.
PADDL3 $C067 49255 Read analog-input 3.
PTRIG $C070 49264 Analog-input reset.

168 Apple 1IGs Hardware Reference

Built-in real-time clock

The real-time clock (RTC) chip provides the system with calendar and clock information as
well as parameter RAM preserved by battery power. These functions are performed through
two read/write registers: the control and data registers.

& Note: The parameter RAM in the RTC is used for system parameters, and is not available
to, nor should it be used by, programs other than the system.

The control register (located at $C034), shown in Figure 7-11, serves a dual function: as the
control register for the RTC and as the Border Color register. Refer to “Border Color” in
Chapter 4 for more information on controlling the color of the display border.

Serial data communication to and from the RTC is carried out one byte at a time. (The terms
read and write are used in perspective of the system: A read transfers data from the clock
chip, while a write transfers data to the clock chip.) To write to the clock chip, the program
must first write the data into the Data register ($C033), then set the appropriate bits in the
control register ($C034). To read from the clock chip, set the appropriate control register
bits, and then read the data from the Data register.

@ Note: To remain compatible with future Apple II products, use the firmware calls to read
and write data to the RTC. See the Apple IIGS Firmware Reference for how to use the
firmware.

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

Chapter 7 Built-in I/O Ports and Clock

169

= Figure 7-11 Control register at $C034

Border color

7161514312 1]0

Start/finished J
Read/write

Last byte

Reserved; do not modify —

» Table7-16 Bits in the control register

Bit Value Description
7 1 A read or write to the the clock chip begins by setting this
bit to 1.
0 This bit is set to 0 automatically by the RTC when the data

exchange is complete. The program can detect that the
exchange has been completed by polling bit 7 for a 0.

0 1 The read/write bit: Set this bit to 1 prior to a read from the
RTC.
0 Set this bit to 0 prior to a write to the RTC.
5 1 The last-byte control bit: After the last byte has been read

or written, this bit must be set to 1. This last step is
necessary to avoid corrupting the data in the clock chip
after the transactions are completed.

0 A data transfer typically involves an exchange of two or
three bytes. Set this bit to 0 before transferring any bytes
to or from the RTC.

4 - Reserved; do not modify.
3-0 - Border Color register: See “Border Color” in Chapter 4 for
details on selecting the video display border color.

170 Apple IIGS Hardware Reference

Chapter 8 I/O Expansion Slots

The main logic board of the Apple 1IGs has seven empty peripheral-card
connectors or slots on it. These slots make it possible to add features by
plugging in peripheral cards with additional hardware. This chapter
describes the hardware that supports these slots, including the signals
available at the expansion slots. Figure 8-1 is a block diagram of the
Apple TIGs that shows the relationship of the slots in the computer.

17

= Figure 8-1 Expansion slots and other components in the Apple 11GS

Slots 1 2 3 4 5 0 7

Game
port Multiplexer
Slotmaker E.E ELE E.E E
Digital-to-analog
| converters
Analog RGB
video
| video i
| T Graphics amplifiers 0000009
Mega Il
} § Controller
Buffers | NTSC
: Real-time generator
clock

| Composite
| video
|
|
——————— - (250K Apple IIGS

| ADB only)‘ | Sound

| GLU Retrof GLU

‘ Serial I Ypa

65C816[1 Fpr | Communications
128K or | Controller WM —

1 MB RAM | ! ADB A 64K
| micro- H RAM
| controller |

4 [H
I @ @&
g | 0000000000 Retrofit El’lSOl’liq
Serial Serial \ 20co00000 DOC
| : keyboard
128K or portA port B Disk = ¥ I
I | port sk pppletics | — T
udio
Memory | Apple O (O amplifier [|Speaker

expansion | Desktop External z

slot | Bus speaker

& Note: The Apple IIGS has seven expansion slots plus a memory expansion slot. This
memory expansion slot is not the same as the seven expansion slots, nor should it be used
as such. Also, the memory expansion slot is not the same as the auxiliary slot in the
Apple Tle, nor should it be used as such. The memory expansion slot is to be used for
memory expansion cards designed specifically for this slot. See “Memory Expansion,” in
Chapter 3, for a description of this slot.

172 Apple IIGS Hardware Reference

The expansion slots

The seven connectors lined up across the back part of the Apple 1IGS main circuit card are
the expansion slots (also called peripheral slots or simply slofs), numbered from 1 to 7. They
are 50-pin card-edge connectors with pins on 0.10-inch centers. A circuit card plugged into
one of these connectors has access to all the signals necessary to perform input and output
and to execute programs in RAM or ROM on the card. These signals are described in Table 8-1
and are shown in Figure 8-2.

= Figure 8-2 Peripheral-expansion slot pins

GND C O +5V
(N.C. on slot 1) DMA IN C C DMA OUT (N.C. on slot 7)
(N.C.onslot 1) INT IN . % INT OUT (N.C. on slot 7)
/NMI C /DMA
/IRQ & C?C; RDY
/RST C . /IOSTRB
/INH C C N.C. (/SYNC on slot 7)
-12v C . A2R/W
SV C C Al5
(M2BO0 on slot 3; CREF on slot 7) N.C. C C Al4
™ C C Al3
Q3 ® ® A2
0l . C All
/M2SEL C C Al0
00 . C A9
/DEVSEL C . A8
D7 C C A7
D6 C . A6
D5 O C A5
D4 C C A4
D3 C C A3
D2 :: C A2
D1 . C Al
DO C C A0
+12V /IOSEL
®_ TR

Chapter 8 1/0 Expansion Slots 173

s Table 81

Expansion slot signals

Pin

Signal

Description

1

2-17

18

19

20

21

22

23

24

25

20
27

28

29

/TIOSEL

A0-A15

A2R/W

/SYNC

/IOSTRB

RDY

/DMA

INT OUT

DMA OUT

+5V

GND
DMA IN

INT IN

/NMI

Normally high; goes low during 60 when the 65C816 addresses
location $Cnxx, where 7 is the connector number. This line can
drive 10 LS TTL loads.*

Three-state address bus: The address becomes valid during o1
and remains valid during 0. Each address line can drive

2 LS TTL loads.*

Three-state read/write line: Valid at the same time as the
address bus; high during a read cycle, low during a write cycle.
It can drive 2 LS TTL loads.*

Composite horizontal and vertical sync, on expansion slot 7
only. (This pin has no connection on the other 6 slots.) This
line can drive 2 LS TTL loads.*

Normally high; goes low during 00 when the 65C816 addresses a
location between $C800 and SCFFF. This line can drive

4 LS TTL loads.

Input to the 65C816: Pulling this line low during 01 halts the
065C816 with the address bus holding the address of the
location currently being fetched. This line has a 4700-ohm
pullup resistor to +5 volts.

Input to the address bus buffers: Pulling this line low during 01
disconnects the 65C816 from the address bus. This line has a
3300-ohm pullup resistor to +5 volts.

Interrupt priority daisy-chain output: Usually connected to
pin 28 (INT IN). On slot 7 only, this pin has no connection.
DMA priority daisy-chain output: Usually connected to pin 27
(DMA IN). On slot 7 only, this pin has no connection.

+5-volt power supply: A total of 500 mA is available for all
peripheral cards.

System common ground.

DMA priority daisy-chain input: Usually connected to pin 24
(DMA OUT). On slot 1 only, this pin has no connection.
Interrupt priority daisy-chain input: Usually connected to pin
23 (INT OUT). On slot 1 only, this pin has no connection.
Nonmaskable interrupt to 65C816: Pulling this line low starts
an interrupt cycle with the interrupt-handling routine at
location $03FB. This line has a 3300-ohm pullup resistor to

+5 volts.

174 Apple IIGs Hardware Reference

= Table 8-1 Expansion slot signals (Continued)

Pin Signal Description

30 /IRQ Interrupt request to 65C816: Pulling this line low starts an
interrupt cycle only if the interrupt-disable (1) flag in the
65C816 is not set. Uses the interrupt-handling routine at
location $O3FE. This line has a 3300-ohm pullup resistor to
+5 volts.

31 /RST Pulling this line low initiates a reset routine.

32 /INH Pulling this line low during o1 inhibits (disables) the memory
on the main circuit board. This line has a 3300-ohm pullup
resistor to +5 volts.

33 -12v —12-volt power supply: A total of 200 mA is available for all
peripheral cards.

34 -5V -5-volt power supply: A total of 200 mA is available for all
peripheral cards.

35 CREF 3.58-MHz color-reference signal.: slot 7 only. This line can
drive 2 LS TTL loads.*

35 M2B0 Mega II bank 0 signal. 256K Apple IIGS: slot 3 only; 1 MB Apple
11GS: slots 1—o6. This signal is the bank address bit and is valid
only during Mega II accesses.

36 ™ System 7-MHz clock: This line can drive 2 LS TTL loads.*

37 Q3 System 2-MHz asymmetrical clock: This line can drive 2 LS TTL
loads.*

38 ol @1 clock: This line can drive 2 LS TTL loads.*

39 /M2SEL The Mega II select signal: This signal goes low whenever the
Mega II is addressing a location within the 128K of Mega II
RAM.

40 20 @0 clock: This line can drive 2 LS TTL loads.*

41 /DEVSEL Normally high; goes low during @0 when the 65C816 addresses
location $COnx, where # is the connector number plus 8. This
line can drive 10 LS TTL loads.*

42-49 D7-D0 Three-state buffered bidirectional data bus: Data become
valid during 00 high and remain valid until 90 goes low.

Each data line can drive 1 LS TTL load.*
50 +12V +12-volt power supply: A total of 250 mA is available for all

*

Loading limits are for each card.

peripheral cards.

Chapter 8 1/0 Expansion Slots

175

Apple II compatibility

The seven I/O slots in the Apple IIGS are almost identical to the slots in the Apple Ile, the
only exceptions being signals /M2SEL and M2B0. /M2SEL replaces UPSYNC on pin 39, and
M2B0 is available at pin 35, only at slot 3; CREF is still available at pin 35, at slot 7.

The slots behave like their counterparts in the Apple IT with only a few differences, the most
important being the behavior of the address bus. Since the Apple IIGS computer can operate
at 2.8 MHz and has a 24-bit address, the address bus to the slots is not always valid as it was
in the Apple II. The signal /M2SEL indicates when a valid address for banks 224 or 225 ($E0 or
SE1) is present on the address bus and so should be used to qualify any address decoding
that does not use /IOSEL. Since these memory spaces contain video buffers and 1/0
addresses, peripheral video cards can make extensive use of these two signals.

Direct memory access

Direct memory access (DMA) supports the address range $00 through $4F. This means that
any peripheral card using DMA may have direct address control of all memory (main and
expansion memory). Be sure to load the DMA bank register, located at address $C037, with
the 8 most-significant bits of the address before performing DMA.

During DMA cycles (memory access cycles that are controlled by a DMA peripheral card), the
address bus is turned off until the bank address has been latched. When that happens, the
address bus is enabled, pointing “in” toward the FPI and 65C816. The FPI decodes the
address and stored DMA bank address to determine whether the cycle is to RAM, ROM, or
Mega II. If the cycle is a DMA to the Mega II (or slots), the Mega II select line is asserted by
the FPI, and the FPI data buffers are turned off if the R/W line is high. If the access is to the
high-speed RAM, the data buffers are enabled while ¢0 is high.

¢ Note: To increase read/write data timing margins to the high-speed RAMs, the FPI
generates an early CAS (card address strobe) signal for read cycles and a late CAS signal
for write cycles. This makes read data available earlier and requires less write data setup
time.

176 Apple 1IGs Hardware Reference

1/0 in the Apple IIGS

The input and output functions are made possible by built-in I/0 devices and the use of
peripheral-slot I/O and DMA cards. The following sections describe these cards.

Slot I/0 cards

Most I/O cards used in the Apple II also work in the Apple IIGS. Cards that use the /IOSEL
and /DEVSEL bus signals will work especially well, because they do not have to deal with the
larger address range of the Apple IIGs.

The 65C816 processor operates with a 24-bit address; however, the I/O slots receive only a
16-bit address. Therefore, cards that use the 16-bit address decode select method rather
than the /DEVSEL and /IOSEL signals will not work properly. These cards include the
multifunction I/O cards that emulate multiple I/O cards and most add-on RAM cards. In
general, these types of cards will not be needed because of the extensive built-in I/O and
high-speed RAM expansion already provided.

Cards that use /INH will work properly if

= the system is running at 1.024 MHz

= they assert /INH within 200 nanoseconds of the ¢0 falling edge

However, compatibility with this type of card must be determined on an individual basis,

because many Monitor firmware calls execute code in bank $FF, and many cards are not
designed to decode bank information.

The FPI will ignore any occurrence of /INH when the system is running fast (2.8 MHz), or
when it is not in a bank where I/O and language-card operation are enabled. By ignoring
/INH, compatibility with existing cards is improved.

DMA cards

Many DMA cards that work successfully in previous Apple I models will work in the

Apple 11GS, but may require changes in their firmware or associated software to function
properly with the DMA bank register. In general, DMA cards that assert and remove the /DMA
signal within the first 120 nanoseconds of the ¢0 rising edge will probably work properly; this
allows sufficient time for /M2SEL to be activated by the FPI when video and 1/O accesses
are required.

Chapter 8 1/0 Expansion Slots

177

¢ Note: Normally the system should be running at 1.024 MHz when performing DMA;
otherwise, DMA to 1/O or Mega II video areas will not work properly. However, DMA can

be performed while the system is running fast as long as the following warnings are
heeded:

= Only high-speed RAM or ROM can be accessed (access to 1/0, video, or the Mega II
banks does not work properly).

= Fast DMA may cause a repeated cycle to occur to the location currently being
accessed by the processor. This repetition could cause a malfunction if the processor
is accessing I/O when the DMA occurs; however, a repeated access to a RAM or ROM
location will have no effect. The 65C816 can be stopped indefinitely for DMA and
does not require any processor refresh cycles from a DMA card.

Expansion-slot signals

Many of the expansion-slot signals can be grouped into three general categories:
» those that constitute and support the address bus
= those that constitute and support the data bus

s those that support the functions of DMA and interrupts

These signals are described in the following paragraphs. For additional information, refer to
the schematic diagrams in the addendum at the back of the book.

The buffered address bus

The microprocessor’s address bus is buffered by two 74HCT245 octal three-state
bidirectional buffers. The 65C816 R/W line is also buffered. The FPI disables these buffers
when requested by any peripheral card so that peripheral DMA circuitry can control the
address bus. The DMA address and A2R/W signals supplied by a peripheral card must be
stable all during ¢0 of the instruction cycle. (Refer to the timing diagram in Figure 8-11 shown
later in this chapter.)

Another signal that can be used to disable normal operation of the Apple 1IGS is /INH. Pulling
/INH low disables all the memory in the Apple 1IGS except the part in the I/O space from
$C000 to SCFFF. A peripheral card that uses either /INH or /DMA must observe proper timing;
in order to disable RAM and ROM properly, the disabling signal must be stable all during ¢0 of
the instruction cycle. (Refer to the timing diagram in Figure 8-10 shown later in this chapter).

The peripheral devices should use /IOSEL and /DEVSEL as enables. Most peripheral-card ICs
require their enable signals to be present for a certain length of time before data are strobed
into or out of the device. Remember that /IOSEL and /DEVSEL are asserted only during ¢0 high.

178 Apple IIGS Hardware Reference

The slot data bus

The Apple I1GS has three versions of the microprocessor data bus (shown in Figure 8-3):

= the internal data bus, DBUS, connected directly to the microprocessor and the FPI chip
and all main RAM

= the Mega II data bus, MDBUS, connecting the Mega II, VGC, Serial Communications
Controller (SCC), Integrated Woz Machine (IWM), ADB and Sound General Logic Units
(GLUs), and the Mega IT RAM main bank

» the slot data bus, SDBUS, common to all expansion slots

= Figure 8-3 Data buses within the Apple 1IGS

Sound GLU [
ADBGLU |
Main RAMS 8Mb [WM -
Expansion
slots
—————
—
65c816 | | DBUS | 74HCT245 | MDBUS .| 74HCT245 | SDBUS ~e——=
microprocessor buffer buffer |=|==
——————
FPI - SCC <
> Mega Il -
ADBUS
> VGC -
Mega Il
»| auxillary
bank
Mega II
main bank

Chapter 8 1/O Expansion Slots 179

The 65C816 is fabricated with MOS (Metal Oxide Semiconductor) circuitry, so it can drive
capacitive loads of up to about 130 picoFarads. If peripheral cards are installed in all seven
slots, the loading on the data bus can be as high as 500 pF, so the 74HCT245 buffer is used to
drive the data bus peripheral-card loads. The same situation occurs if you use MOS devices
on peripheral cards: They can't provide enough drive current for the fully loaded bus, so you
should add buffers. A peripheral card must have the capacity to drive two LS TTL loads per
slot pin, plus additional capacitance for the Apple 11GS data bus.

Interrupt and DMA daisy chains

The interrupt requests (/IRQ and /NMI) and the direct memory access (/DMA) signal are
available at all seven expansion slots. A peripheral card requests an interrupt or a DMA
transfer by pulling the appropriate output line (pin 24) low. If two peripheral cards request an
interrupt or a DMA transfer at the same time, they will contend for the data and address
buses. To prevent this contention, two pairs of pins on each connector are wired as a priority
daisy chain. The daisy-chain pins for interrupts are INT IN (pin 28) and INT OUT (pin 23),
and the pins for DMA are DMA IN (pin 27) and DMA OUT (pin 24), as shown in Figure 8-2.

Each daisy chain works like this: The output from each connector goes to the input of the next
higher numbered one. For these signals to be useful for cards in lower numbered connectors, all
the higher numbered connectors must have cards in them, and all those cards must connect
DMA IN to DMA OUT and INT IN to INT OUT. Whenever a peripheral card uses pin /DMA, it
must do so only if its DMA IN line is active, and it must disable its DMA OUT line while it is
using /DMA. The INT IN and INT OUT lines must be used the same way: Enable the card’s
interrupt circuits with INT IN, and disable INT OUT whenever /IRQ or /NMI is being used.

Loading and driving rules

Do not overload any pin on the expansion slots; the driving capability of each pin is listed
under each signal description in Table 8-1. The address bus, the data bus, and the A2R/W line
should be driven by three-state buffers; remember that there is considerable distributed
capacitance on these buses and that you should plan on tolerating the added load of up to
six additional peripheral cards. MOS devices such as PIAs (peripheral interface adapters) and
ACIAs (asynchronous communications interface adapters) cannot switch such heavy
capacitive loads; connecting such devices directly to the bus will lead to possible timing and
level errors. Buffer all MOS output signals.

180 Apple IiGs Hardware Reference

The total power-supply current available for all seven expansion slots is
= 500 mA at +5 volts

= 250 mA at +12 volts

= 200 mA at -5 volts

s 200 mA at -12 volts

The support circuitry for the slots is designed to handle a DC load of two LS TTL loads per
slot pin and an AC load of no more than 15 pF per slot pin.

Peripheral programming

The seven expansion slots on the main logic board are used for installing circuit cards
containing the hardware and firmware needed to interface peripheral devices to the

Apple I1GS. These slots are not simple I/O ports; peripheral cards can access the computer’s
address and control lines via these slots. The expansion slots are numbered from 1 to 7, and
certain signals, described below, are used to select a specific slot.

Selecting a device

The Apple I1GS supports several built-in devices and traditional slot devices, with each
device taking up one logical slot. Each built-in device is assigned to a slot, and peripheral
cards are plugged into any of the seven peripheral slots. However, only one device (either the
built-in device or the peripheral device) can be selected at a time for each slot. For example,
you can choose either the peripheral device in slot 2 or the internal device that is associated
with slot 2 but built into the main logic board, the serial port.

The Slot register

The Slot register, located at $C02D, is used to select which device is enabled for each of the
seven slots. That device can be either the internal or a peripheral-card device. If the enable
bit for a slot is 1, accesses for that slot’s ROM space ($Cnxx) are directed to the ROM on the
peripheral card. If the enable bit is cleared, the built-in I/O device is selected, and the

Chapter 8 1/0 Expansion Slots

181

system ROM code associated with the slot is executed. The user can select the appropriate
slot device through the Control Panel. The user can access the Control Panel by pressing the
Command-Control-Esc keys simultaneously. The Slot register format is given in Figure 8-4.
Table 8-2 gives a description of each bit.

Note: Slot 3 device hardware addresses are always available. However, the slot 3 ROM
space is controlled by the SETSLOTC3ROM and SETINTC3ROM soft switches to
maintain compatibility with existing Apple II products.

A Warning You are encouraged not to manipulate the Slot register bits under
software control; you run a great risk of crashing the operating system. a

A Warning Be careful when changing bits within this register. Use only a read-
modify-write instruction sequence when manipulating bits. See the
warning in the preface. a

= Figure 8-4 Slot register at $C02D

7165143210

Slot 7 device select —)
Slot 6 device select

Slot 5 device select

Slot 4 device select —

Reserved; do not modify —

Slot 2 device select —

Slot 1 device select .

Reserved; do not modify J

182 Apple IIGs Hardware Reference

= Table 8-2 Bits in the Slot register

Bit Value Description

7 0 Selects the internal-device (AppleTalk) ROM code for
slot 7.
1 Enables both the slot-card ROM space (location $C700 to
$C7FF) and 1/O space $COF0 to SCOFF.
0 0 Selects the internal-device (5.25-inch disk drive) ROM
code for slot 6.
1 Enables both the slot-card ROM space (location $C600 to
$COFF) and 1/0 space $COE0 to $COEF.
5 0 Selects the internal-device (3.5-inch disk drive) ROM code
for slot 5.
1 Enables both the slot-card ROM space (location $C500 to
$CSFF) and 1/0 space $CODO to $CODF.
4 0 Selects the internal-device (mouse) ROM code for slot 4.
1 Enables the slot-card ROM space (location $C400 to
$C4FF).
3 - Reserved; do not modify.
2 0 Selects the internal-device (serial port B, the modem port)
ROM code for slot 2.
1 Enables both the slot-card ROM space (location $C200 to
$C2FF) and 1/0 space $COA0 to $COAF.
1 0 Selects the internal-device (serial port A, the printer port)
ROM code for slot 1.
1 Enables both the slot-card ROM space (location $C100 to
$C1FF) and 1/O space $C090 to $COF.
0 - Reserved; do not modify.

Note: 1/0 space for slots 3 (§COBO to SCOBF) and 4 ($C0CO to $COCF) is always enabled.

Peripheral-card memory spaces

Because the Apple 1IGS microprocessor does all its I/O through memory locations, portions
of the memory space have been allocated for the exclusive use of the cards in the expansion
slots. In addition to the memory locations used for actual I/O, there are memory spaces
available for programmable memory (RAM) in the main memory and for read-only memory
(ROM or PROM) on the peripheral cards themselves.

Chapter 8 1/0 Expansion Slots 183

The memory spaces allocated for the peripheral cards are described below. These memory
spaces are used for small dedicated programs such as 1/0 drivers. Peripheral cards that
contain their own driver routines in firmware are called intelligent peripherals. They make it
possible for you to add peripheral hardware to your Apple IIGS without having to change
your programs, provided that your programs follow normal practice for data input and
output.

Peripheral-card 1/0 space

Each expansion slot has the exclusive use of 16 memory locations for data input and output
in the memory space beginning at location $C090. Slot 1 uses locations $C090 through $CO9F,
slot 2 uses locations $C0A0 through $COAF, and so on through location $COFF, as shown in
Table 8-3.

These memory locations are used for different 1/0 functions, depending on the design of
each peripheral card. Whenever the Apple I1Gs addresses one of the 16 I/O locations
allocated to a particular slot, the signal on pin 41 of that slot, called /DEVSEL, switches to
the active (low) state. This signal can be used to enable logic on the peripheral card that uses
the four low-order address lines (A0 through A3) to determine which of its 16 1/0 locations is
being accessed.

= Table 83 Peripheral-card I/0 memory locations enabled by /DEVSEL

Slot Locations Slot Locations

1 $C090-$CO9F 5 $CODO-$CODF
2 $COA0-$COAF ¢ $COE0-$COEF
3 $COB0-$COBF 7 $COFO0-$COFF
4 $C0OCO-$COCF

Peripheral-card ROM space

One 256-byte page of memory space is allocated to each accessory card. This space is
normally used for read-only memory (ROM or PROM) on the card, and contains driver
programs that control the operation of the peripheral device connected to the card.

184 Apple 1IGs Hardware Reference

The page of memory allocated to each expansion slot begins at location $Cn00, where 7 is
the slot number, as shown in Table 8-3 and Table 8-4. Whenever the Apple IIGS addresses one
of the 256 ROM memory locations allocated to a particular slot, the signal on pin 1 of that
slot, called /IOSEL, switches to the active (low) state. This signal enables the ROM or PROM
devices on the card, and the eight low-order address lines determine which of the 256
memory locations is being accessed.

= Table 8-4 Peripheral-card I/0O memory locations enabled by /IOSEL

Slot Locations Slot Locations

1 $C100-$C1FF 5 $C500-$SC5FF
2 $C200-SC2FF 6 $C600-$COFF
3 $C300-$C3FF 7 $C700-$C7FF
4 $C400-$C4FF

Expansion ROM space

In addition to the small areas of ROM memory allocated to each expansion slot, peripheral
cards can use the 2K memory space from $C800 to $CFFE for larger programs in ROM or
PROM. This memory space is called expansion ROM space. (See the memory map in Figure 8-
7, shown later in this chapter.) Besides being larger, the expansion ROM memory space is
always at the same locations, regardless of which slot is occupied by the card, making
programs that occupy this memory space easier to write.

This memory space is available to any peripheral card that needs it. More than one peripheral
card can use the expansion ROM space, but only one of them can be active at a time.

Each peripheral card that uses expansion ROM must have a circuit on it to enable the ROM.
The circuit does this by a two-stage process: First, it sets a flip-flop when the /IOSEL signal,
pin 1 on the slot, becomes active (low); the /IOSEL signal on a particular slot becomes active
whenever the Apple IIGS microprocessor addresses a location in the 256-byte ROM address
space allocated to that slot. Second, the circuit enables the expansion ROM devices when
the /IOSTRB signal, pin 20 on the slot, becomes active (low); the /IOSTRB signal on all the
expansion slots becomes active (low) when the microprocessor addresses a location in the
expansion ROM memory space, $C800 to $CFFE. The /IOSTRB signal is then used to enable
the expansion ROM devices on a peripheral card. Figure 8-5 shows a typical ROM enable
circuit.

Chapter 8 1/0 Expansion Slots

185

= Figure 8-5 Expansion ROM enable circuit

/1/O SELECT S Enable 1
Latch >
(/scrFF) R
ble 2
/1/0 STROBE } Enable 2_{ 2KROM
D — AO 10 A10 .

A program on a peripheral card can get exclusive use of the expansion ROM memory space by
referring to location SCFFF in its initialization phase. This location is special: All peripheral
cards that use expansion ROM must recognize a reference to SCFFF as a signal to disable their
expansion ROMs. Of course, doing so also disables the expansion ROM on the card that is
about to use it, but the next instruction in the initialization code sets the expansion ROM
enable circuit on the card.

A card that needs to use the expansion ROM space must first insert its slot address ($Cn) in
location $07F8 (known as MSLOT) before it refers to SCFFF. This allows interrupting devices
to re-enable the card’s expansion ROM after interrupt handling is finished. Once its slot
address has been written in MSLOT, the peripheral card has exclusive use of the expansion
memory space and its program can jump directly into the expansion ROM.

As described earlier, the expansion ROM disable circuit resets the enable flip-flop whenever
the microprocessor addresses location $CFFF. To do this, the peripheral card must detect
the presence of SCFFF on the address bus. You can use the /IOSTRB signal for part of the
address decoding, since it is active for addresses from $C800 through $CFFF. If you can
afford to sacrifice some ROM space, you can simplify the address decoding even further and
save circuitry on the card. For example, if you give up the last 256 bytes of expansion ROM
space, your disable circuit needs to detect only addresses of the form $CFxx, and you can
use the minimal disable decoding circuitry shown in Figure 8-6.

= Figure 8-6 ROM disable address decoding

F

A

A 1D
‘ To reset, ROM enable
A10 Flip-flop

/I/O STROBE >0

/\:J
\

186 Apple 1IGs Hardware Reference

Peripheral-card RAM space

There are 56 bytes of main memory allocated to the peripheral cards, 8 bytes per card, as
shown in Table 8-5. These 56 locations are actually in the RAM memory space reserved for the
text and Lo-Res graphics displays, but these particular locations (called screen holes) are not
displayed on the screen and their contents are not changed by the built-in output routine
COUTTI. Programs in ROM on peripheral cards use these locations for temporary data
storage.

= Table 85 Peripheral-card RAM memory locations

Slot number

Base

address 1 2 3 4 5 6 7
$0478 $0479 $047A $047B $047C $047D S$047E $047F
$04F8 $04F9 $04FA S$04FB $04FC $04FD SO4FE $04FF
$0578 $0579 $057A $057B $057C $057D SOS7E SO57F
$05F8 $05F9 $0SFA $05FB $0SFC $05FD SOSFE SOSFF
$0678 $0679 $067A $067B $067C $067D $067E S067F
$00F8 S06F9 SO6FA $0GFB SOOFC SOGFD $OOFE $0OFF
$0778 $0779 $077A $077B $077C $077D S$077E $077F
$07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $O7FF

A program on a peripheral card can use the eight base addresses shown in the table to access
the eight RAM locations allocated for its use, as shown in the next section, *I/O Programming
Suggestions.”

I/0 programming suggestions

A program in ROM on a peripheral card should work no matter which slot the card occupies,
excepting any hardware restrictions (such as a signal not available at some slots). If the
program includes a jump to an absolute location in one of the 256-byte memory spaces, then
the card will work only when it is plugged into the slot that uses that memory space. If you
are writing the program for a peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

Chapter 8 1/0 Expansion Slots

187

/. Important To function properly no matter which slot a peripheral card is installed in,
the program in the card’s 256-byte memory space must not make any
absolute references to itself. Instead of using jump instructions, you
should force conditions on branch instructions, which use relative
addressing.

The first thing a peripheral card used as an I/O device must do when called is to save the
contents of the microprocessor’s registers. (Peripheral cards not being used as I/O devices
do not need to save the registers.) The device should save the registers’ contents on the
stack, and restore them just before returning control to the calling program. If there is RAM
on the peripheral card, the information may be stored there.

Finding the slot number with ROM switched in

The memory addresses used by a program on a peripheral card differ depending on which
expansion slot the card is installed in. Before it can refer to any of those addresses, the
program must somehow determine the correct slot number. One way to do this is to execute
a JSR (jump to subroutine) to a location with an RTS (return from subroutine) instruction in
it, and then derive the slot number from the return address saved on the stack, as shown in
the following example.

/. Important Make sure the return address is located in Apple 1IGs RAM, not the
memory on the peripheral card.

PHP ; save status

SEI ; inhibit interrupts

JSR KNOWNRTS ; ->a known RTS instruction...
;...that you set up

TSX ; get high byte of the...

LDA $0100,X ; ...return address from stack
AND #SOF ; low-order digit is slot no.
PLP ; restore status

The slot number can now be used in addressing the memory allocated to the peripheral card,
as shown in the next section.

188 Apple IIGS Hardware Reference

I/0 addressing

Once your peripheral-card program has the slot number, the card can use the number to
address the 1/0O locations allocated to the slot. Table 8-6 shows how these locations are
related to 16 base addresses starting with $C080. Notice that the difference between the
base address and the desired 1/O location has the form $n0, where 7 is the slot number.
Starting with the slot number in the accumulator, the following example computes this
difference by four left shifts, then loads it into an index register and uses the base address
to specify one of 16 1/O locations.

ASL ; get n into...

ASL ;

ASL ;

ASL ; ...high-order nibble...

TAX ; ...o0f index register.

LDA $C080,X ; load from first I/0 location

= Table 8-6 Peripheral-card 1/O base addresses

Slot number

Base

address 1 2 3 4 5 6 7
$C080 $C090 $COAO0 $SCOBO $COCO $CODO $COEO0 $COF0
$C081 $C091 $COA1 $COB1 $COC1 $COD1 $COE1 $COF1
$C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2
$C083 §C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3
$C084 $C094 $COA4 $COB4 $COC4 $COD4 SCOE4 $COF4
$C085 $C095 SCOA5 $COB5 $COC5 $CODS $COES $COF5
$C086 $C096 SCOAG $COB6 $COC6 $CODG $COE6 $COF6
$C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7
$C088 $C098 $COA8 $COBS $COC8 $CODS8 $COES $COF8
$C089 $C099 $COA9 $COBY9 $COCY $COD9 $COE9 $COF9
$CO8A $CO9A $COAA $SCOBA $COCA $CODA $COEA $COFA
$CO8B $C09B $COAB $COBB $COCB $CODB S$COEB $COFB
$C08C $CO9C $COAC $COBC $COCC $CODC $COEC $COFC
$C08D $CO9D $COAD $COBD $COCD $CODD $COED $COFD
$COSE $CO9E $COAE SCOBE $COCE S$SCODE $COEE $COFE
$COSF $CO9F $COAF $COBF $COCF $CODF $COEF $COFF

CHAPTER 8 1/O Expansion Slots

189

& Selecting your target: You must make sure that you get an appropriate value into the
index register when you address 1/O locations this way. For example, starting with 1 in
the accumulator, the instructions in the above example perform an LDA from location
$C090, the first 1/0 location allocated to slot 1. If the value in the accumulator
(discussed in detail in Chapter 10) had been 0, the LDA would have accessed location
$C080, thereby setting the soft switch that selects the second bank of RAM at location
$D000 and enables it for reading.

RAM addressing

A program on a peripheral card can use the eight base addresses shown in Table 8-5 to access
the eight RAM locations allocated for its use. The program does this by putting its slot
number into the Y Index register (discussed in detail in Chapter 10) and using indexed
addressing mode with the base addresses. The base addresses can be defined as constants
because they are the same no matter which slot the peripheral card occupies.

If you start with the correct slot number in the accumulator (by using the example shown
earlier in this chapter, in the section “Finding the Slot Number With ROM Switched In”), then
the following example uses all eight RAM locations allocated to the slot:

TAY
LDA $0478,Y
STA S04F8,Y
LDA $0578,Y
STA SO05F8,Y
LDA $0678,Y
STA S06F8,Y
LDA $0778,Y
STA S07F8,Y
A Warning

190

You must be very careful when you have your peripheral-card program
store data at the base-address locations themselves because they are
temporary storage locations; the RAM at those locations is used by the
disk operating system. Always store the first byte of the ROM location
of the expansion slot that is currently active ($Cn) in location $07F8
(MSLOT), and the first byte of the ROM location of the slot holding the
controller card for the startup disk drive in location $05F8. a

Apple IIGS Hardware Reference

Other uses of I/0 memory space

The portion of memory space from location $C000 through $CFFF is normally allocated to
I/O and program memory on the peripheral cards, but this computer has built-in functions
that also use this memory space. Figure 8-7 shows the division of the address spaces assigned
to the built-in and peripheral devices. The soft switches that control the allocation of this
memory space are described in the next section.

= Figure 87 1/O memory map
SCFFF
Peripheral - Internal ROM Internal ROM
expansion ROM and peripheral -
expansion ROM
$C800
Slot 7 ROM AppleTalk ROM
$C700
Slot 6 ROM 5.25-inch disk ROM
$C600
Slot 5 ROM 3.5-inch disk ROM
$C500
Slot 4 ROM Mouse ROM
$C400
Slot 3 ROM 80-column ROM
$C300
Slot 2 ROM Serial-port ROM
$C200
Slot 1 ROM Serial-port ROM
$C100
Internal soft switches and peripheral 1/0O
$C000

CHAPTER 8 1/O Expansion Slots

191

Switching I/O memory

The built-in firmware uses two sets of soft switches to control the allocation of the 1/0
memory space from $C000 to $CFFF. The locations of these soft switches are given in

Table 8-7.

& Note: Like the display switches described earlier in this chapter, these soft switches share
their locations with the keyboard data and strobe functions. The switches are activated
only by writing, and the states can be determined only by reading, as indicated in

Table 8-7.

= Table 8-7 I/O memory switches

Location
Name Function Hex Dec Notes
SETSLOTC3ROM Enable slot ROM at $C300 $CO0B 49163 Write
SETINTC3ROM Enable internal ROM at $C300 $CO0A 49162 Write
RDC3ROM Read SLOTC3ROM switch $C017 49175 Read (1 = slot 3 ROM enabled,
0 = internal ROM enabled)
SETSLOTCXROM Enable slot ROM at $Cx00 $C006 49159 Write
SETINTCXROM Enable internal ROM at $Cx00 $C007 49158 Write

RDCXROM Read SLOTCXROM switch $C015

49173

Read (1 = slot ROM enabled,
0 = internal ROM enabled)

When SETSLOTC3ROM is on, the 256-byte ROM area at $C300 is available to a peripheral
card in slot 3, which is the slot normally used for a terminal interface. Turning SETINTC3ROM
on disables peripheral-card ROM in slot 3 and enables the built-in 80-column firmware. The
80-column firmware is assigned to the slot 3 address space because slot 3 is normally used
with a terminal interface, so the firmware built into the Apple 11GS will work with programs

that use slot 3 this way.

The bus and 1/0 signals are always available to a peripheral card in slot 3, even when the 80-
column hardware and firmware are operating. Thus it is always possible to use this slot for any

I/O peripheral that does not have built-in firmware.

192 Apple 1IGs Hardware Reference

When SETSLOTCXROM is on, the I/O memory space from $C100 to $C7FF is allocated to the
expansion slots, as described earlier in this chapter, in the section “Peripheral-Card ROM
Space.” Setting SETINTCXROM disables the peripheral-card ROM and selects built-in ROM in
all of the I/O memory space except the space from $C000 to $COFF (used for soft switches
and data 1/0).

@ Note: Setting SETINTCXROM enables built-in ROM in all of the I/O memory space
(except the soft-switch area), including the $C300 space, which contains the
80-column firmware.

Dei'eloping cards for slot 3

In the original Apple Ile firmware, the internal slot 3 firmware was always switched on if there
was an 80-column text card (either 1K or 64K) in the auxiliary slot. This means that
peripheral cards with their own ROM were effectively switched out of slot 3 when the system
was turned on.

In the Apple I1G, only the Control Panel may determine whether or not the peripheral card in
slot 3 is selected.
When programming for cards in slot 3:

= You must support the AUXMOVE and XFER firmware routines. See the Apple IIGs
Firmware Reference for information on these routines.

= Don’t use unpublished entry points into the internal $Cn00 firmware, because they may
change in future Apple II firmware versions.

= If your peripheral card is a character 1/0 device, you must follow the Pascal 1.1
firmware protocol. See the Apple IIGS Firmware Reference for more information.

Interrupts

The original Apple Ile offered little firmware support for interrupts. The Apple IIG$ firmware
provides improved interrupt support. Interrupts are easiest to use with ProDOS and

Pascal 1.2 because they have interrupt support built in. DOS 3.3 has no built-in interrupt
support.

CHAPTER 8 1/O Expansion Slots

193

The main purpose of the interrupt handler is to support interrupts in any memory
configuration. You can best handle interrupts by saving the machine’s state at the time of the
interrupt, placing the Apple IIGS in a standard memory configuration before calling your
program’s interrupt handler, then restoring the original state when your program’s interrupt
handler is finished.

What is an interrupt?

An interrupt is a hardware signal that tells the computer to stop what it is currently doing and
devote its attention to a more important task. Print spooling and mouse handling are
examples of interrupt use: things that don’t take up all the time available to the system, but
that should be taken care of promptly to be most useful.

For example, the Apple IIGS mouse can send an interrupt to the computer every time it
moves. If you handle that interrupt promptly, the mouse pointer's movement on the screen
will be smooth instead of jerky and uneven.

Interrupt priority is handled by a daisy-chain arrangement using two pins, INT IN and INT
OUT, on each peripheral-card slot. Each peripheral card breaks the chain when it makes an
interrupt request. On peripheral cards that don’t use interrupts, these pins should be
connected together.

The daisy chain gives priority to the peripheral card in slot 7: If this card opens the
connection between INT IN and INT OUT, or if there is no card in this slot, interrupt requests
from cards in slots 1 through 6 can't get through. Similarly, slot 6 controls interrupt requests
(IRQ) from slots 1 through 5, and so on down the line.

When the /IRQ line on the Apple IIGS microprocessor is activated (pulled low), the
microprocessor transfers control through the vector in locations $FFFE to $FFFF. This vector
is the address of the Monitor firmware’s interrupt handler, which determines whether the
request is due to an external IRQ or a BRK instruction and transfers control to the
appropriate routine via the vectors stored in memory Page 3. (For further details on handling
interrupts in the Apple IIGS, see the Apple lIGS Firmware Reference.)

The interrupt ROM code is available when shadowing is enabled and the inhibit I/O and
language-card operation (IOLC) bit in the Shadow register is set. The SETINTCXROM and
SETSLOTCXROM soft switches do not affect interrupt ROM accesses.

Timing diagrams

The following pages contain timing diagrams for the slot signals required to handle DMA and
general slot 1/0.

194 Apple lIGs Hardware Reference

= Figure 8-8 I/0O clock and control timing
0 -
| | | :
| |
1 gR'ls
0 \ 4{_
3 4
™ N =
] /s am /1
G 7 \ b \ [
9 10 11
/NMI, -
/IRQ, _
/RDY
12
= Table 8-8 I/O clock and control timing parameters
Number Description Minimum* Maximum*
1 00 low time 480
2 00 high time 480
3 1 high time 480
4 ol low time 480
5 7M low time 60
6 Fall time, all clocks 10
7 Rise time, all clocks 0 10
8 7M high time 00
9 Q3 high time 270
10 Q3 low time 200
11 Skew, @0 to other clock signals -10 10
12 Control signal setup time 140

*

Time in nanoseconds.

CHAPTER 8 I/O Expansion Slots

195

& Note: All clock signals present on the 1/O slots are buffered by the Slotmaker custom IC.
These clock signals are delayed somewhat from the corresponding signals on the main
logic board because of this buffering. All timing parameters in the timing diagrams in this
chapter have been adjusted to account for this delay.

The standard Apple IIGs slot I/O timing is shown in Figure 8-9. The timing parameters are
given in Table 8-9. When the computer is running in high-speed mode (2.8 MHz), the address
bus to the 1/O slots is not valid during the entire 00 cycle, and therefore cannot be used to
perform unqualified address decoding. The /M2SEL signal (which replaces the uSYNC signal
found at pin 39 in previous Apple I models), indicates when a 1.024-MHz, synchronized
memory cycle is taking place and, therefore, when the value on the address bus will remain
valid during the current 00 cycle. This means that cards that use the Apple II technique of
“phantom slotting” to put multiple 1/O devices on one card must use /M2SEL to qualify their
address decoding.

» Figure 8-9 I/O read and write timing

00 N / \

MSEL | 5} 1

/SEL L]_

A 15-A0,
A2R/W
D7-DO (write data) 7/ - X
7 — - 8
D7-DO0 (read data) - 3(/
9 10

196 Apple IIGs Hardware Reference

= Table 89 I/O read and write timing parameters
Number Description Minimum* Maximum*
1 /M2SEL low from ¢0 low 0 160
2 /M2SEL hold time -10
I/O enable low from ¢0 high 0 15
(DEVn, /IOSELn, /IOSTRB)
4 I/O enable high from 00 low 10
(DEVn, /IOSELn, /IOSTRB)
5 Address and A2R/W valid from 00 low 0 100
0 Address and A2R/W hold time 15
7 Write data valid delay 0 30
8 Write data hold time 30
9 Read data setup time to 00 140
10 Read data hold time 10

*

Time in nanoseconds.

Read and write cycles that are directed to the I/O slots by /INH have the same timing
parameters as normal I/O read and write cycles, as shown in Figure 8-10 and Table 8-10. When
/INH is asserted, the computer responds as if a Mega Il memory cycle were being performed.

= Table 8-10 I/O read and write timing parameters with /INH active
Number Description Minimum* Maximum*
1 /INH valid after 00 low 0 175
2 /INH hold time 15
3 /INH low to /M2SEL low delay 0 30
4 /INH high to /M2SEL high delay 0 30
5 Address and A2R/W valid from ¢0 low 0 100
6 Address and A2R/W hold time 15
7 Write data valid delay 30
8 Write data hold time 30
9 Read data setup time to 00 140
10 Read data hold time 10

*

Time in nanoseconds.

CHAPTER 8 1/O Expansion Slots 197

Cards that use the /INH signal will function properly only if the computer is running at 1.024
MHz. If the computer is running at high speed, the addresses that are seen by cards in the I/O
slots are not guaranteed to be valid during an entire 00 cycle. Also, since the upper 8 bits of
the memory address are not available to cards (only 16 address lines are available at the
slots), the potential of /INH is greatly reduced in this machine.

= Figure 8-10 1/O read and write timing with /INH active

00 N\ 1 N
/INH o N X
/M2SEL N\ Vi
A 15-A0, "‘Q 2 9(
A2R/W y
D7-DO (write data) 7 . K

] 8

|
D7-DO (read data) / / % jK/ / /
9 10

DMA devices will work in the Apple IIGS computer only in 1.024-MHz mode. If the computer
is running at high speed (2.8 MHz), only DMA accesses to the high-speed memory banks 0
through 127 will work. Accesses to all /O and video memory must be done at 1.024 MHz. To
slow the system, set the processor speed bit in the Speed register at location $C036 before
requesting DMA.

DMA can be performed to or from any part of the Apple 1IGS memory map, provided that the
DMA bank register is first set to the appropriate bank. DMA read and write timing is shown in
Figure 8-11 and Table 8-11.

198 Apple IIGS Hardware Reference

= Figure 8-11 /DMA read and write timing

00 N\ 7 L

L — -

A 15-A0, = _
AR/W 7

/M2SEL

DMA (write data) — X —

DMA (read data) / /i: /

l‘-ll—‘> -—12

= Table 8-11 /DMA read and write timing parameters

Number Description Minimum* Maximum*
1 /DMA low from @0 low 120
2 /DMA high from ¢0 low 120
3 A15-A0 and R/W float from /DMA 30
4 DMA address and A2R/W valid before

90 goes high 300

5 DMA address and A2R/W hold time 10
0 /DMA high to A15-A0 and A2R/W active 30
7 DMA address valid to /M2SEL low 30
8 DMA address float to /M2SEL high 30

9 90 high to write data valid 100

10 DMA write data hold time 10

11 DMA read data setup time 125

12 DMA read data hold time 30

* Time in nanoseconds.

CHAPTER 8 1/O Expansion Slots 199

Chapter 9 Power Supply

The Apple I1Gs power supply has the same four-supply, switching, load-
sensing design as the Apple II, II Plus, and Ile models. The following
sections describe the design of this unit.

201

{
A

Description

The power supply changes high-voltage alternating current (AC) into low-voltage direct
current (DC). The Apple IIGS does this by using a switching-type power supply that allows
simple, maintenance-free operation.

A Warning The power supply contains dangerously high voltages, and should be
opened by an authorized Apple service technician only. a

The power supply also contains special load-sensing circuitry; whenever this circuitry
detects a short or a no-load condition, the power supply will no longer provide voltages to
the computer. This condition is easily recognized: The supply will emit two audible chirps
per second. This condition will persist until you correct the situation or turn the power
supply off.

Specifications

The Apple IIGS power supply operates on regular household 120-volt alternating current.
The power supply provides +12 volts, —12 volts, +5 volts, =5 volts, and two ground-return
lines.

The power input requirements are 107- to 132-volt alternating current. The power output
specifications are as follows:

m +12voltsat 1A

m -12voltsat0.25 A

s ft5voltsat4 A

s Svoltsat0.25 A

202 Apple IIGs Hardware Reference

Power connector

The power connector is a 6-pin, molex-type, keyed in-line socket. Figure 9-1 shows the pin
configuration of the power connector. Table 9-1 gives a description of each pin.

= Figure 9-1 Power-supply connector

[Y N N I S I

1 2 N.C. 4 5 0 7
= Table 9-1 Pins on the power-supply connector
Pin Signal Description
1 GND Ground
2 GND Ground
3 N.C. No connection
4 ~+5V +5-volt supply
5 +12V +12-volt supply
0 -12v ~12-volt supply
7 -5V =5-volt supply

Chapter 9 Power Supply 203

Chapter 10 The 65C816 Microprocessor

The microprocessor is the intelligence of the computer system. It is this
device that recognizes the instructions encoded by the programmer and
manipulates the other devices in the system (VGC, the Mega I, the
DOC) that result in output such as video and sound. Figure 10-1 shows
the Apple I1GS block diagram and the relationship of the microprocessor
to the rest of the computer.

= Figure 10-1 (5C816 in the Apple IIGS system

Slots 1 2 3 4 5 6 7
f I I " M I I=
Game : 5
port Multiplexer =
{0 cEECEmCEmEEm G Em]
et 9 g9 B9 g8 B8 EF EB4
NE558 Slotmaker L E E E 5 E E
0000 u U U \8}
Game []]]] I] [
I/0 Digital-to-analog
| converters
I\Ega_l I_ N Analog RGB
FPI 1| " video
. 1deo 00000000
| eun I —%%j— G\rlzjgfl(i)cs amplifiers
| g Controller
Buffers | NTSC
| Real-time generator
| clock
| Composite
[video
|
|
_______ - (250K Apple 1IGS
| ADB only) | Sound
} GLU Eg;rgg GLU
| | Serial |
65(3816# FPI | Communications
128K or | Controller WM =
1 MB RAM | ADB TR 64K
. HH
| micro- A RAM
| controller || 1
I
000 000
L] c I - Ensoni
| Serial Serial \SEES5ES5E] kRegofit J DOC !
128K 0 port A port B Disk _ geyboar
250K ROrM | port (2>6K0Arﬁ$)le les 1 Auldi()
Memory ‘I Apple @— amplifier {QSpeaker
€xpansion Desktop External
slot | Bus speaker

The Apple 1IGs uses the 16-bit 65C816 microprocessor, a CMOS design based on the 6502
chip. The microprocessor provides this computer with greater computing power in these
ways:

= It can operate as a 16-bit 65C816 or an 8-bit 6502.
= The 4 MB address range increases the potential program and data size.
» The 16-bit internal data registers increase the computer’s data-handling capability.

» The 2.8-MHz processor speeds computations.

206 Apple IIGS Hardware Reference

This chapter describes the new features of this microprocessor and its capability to
emulate the 6502. Also, each of the 65C816 internal registers is described briefly.

The features of the 65C816

The 65C816 microprocessor shares many characteristics with the 6502 and 65C02 used in
other Apple II-family computers. It also introduces new features not found in other
Apple IT computers. These are

s the 16-bit accumulator

= the 16-bit X and Y Index registers

= the relocatable direct page

= the relocatable stack

» the 24-bit internal address bus

» the 8-bit data address bank register

m the 8-bit program address bank register

= 11 new addressing modes

= 36 new instructions, for a total of 91 (all 256 operation codes)
= fast block-move instructions

= the ability to emulate the 6502 8-bit microprocessor

For detailed descriptions of these features, refer to the manufacturers’ data sheets

at the end of this chapter. To learn how to implement these features, refer to the
Apple 1IGs Workshop Assembler Reference.

The 65C816 microprocessor shares some features with the 6502 and 65C02 micro-
processors used in previous Apple Il models. Table 10-1 lists some of these features.

The 65C816 is software compatible with the 6502 family of microprocessors. Actually, the
65C816 has an emulation mode, in which it becomes an 8-bit 6502, By emulating the 6502,
the 65C816 can execute most programs written for Apple II computers.

Chapter 10 The 65C816 Microprocessor

207

= Table10-1 Some 6500 family ties

6502 6502 65816
Characteristic 1975 1983* 1985*
Construction NMOS CMOS CMOS
ALU bits 8 8 16
Address bus bits 16 16 24t
Data bus bits 8 8 8
Maximum memory 04K 04K 16M
Largest stack 256 256 04K
Defined opcodes 151 178 256
Addressing modes 13 15 24
Relocatable direct (zero) page? No No Yes
6502 software compatible? Yes Yes Yes
Fast block-move instructions? No No Yes

* Year available.

T High 8 bits multiplexed onto data bus.

The 16-bit 65C816

In the Apple IIGS, the 65C816 normally operates in either of two modes: 6502 emulation
mode or 65C816 native mode. Figure 10-2 shows the sizes of the 65C816’s internal registers
in emulation mode and in native mode. In emulation mode, the accumulator and Index
registers are 8 bits wide, and existing Apple II programs run the same as they do on any
other Apple I model. In native mode, the accumulator and Index registers are 16 bits
wide. The 65C816 also has several new and more powerful addressing modes that take
advantage of its 24-bit addressing. The new addressing modes operate in either native
mode or emulation mode, although the shorter registers in emulation mode make some of

the new addressing modes ineffective.

¢ Note: Native mode can also work with 8-bit data registers with an additional
accumulator, the B register. Apple does not recommend 8-bit native mode, but some
internal routines use it, and developers are free to use it if they choose.

208 Apple IIGs Hardware Reference

= Figure 10-2 65C816 registers

6502 emulation mode 65C816 native mode
B A —————— Accumulator B A
X Index register X
Y Index register Y
Data bank register DBR

Stack pointer

P ——— Program Status register p
PC ———————— Program counter PC
PBR Program bank register PBR
D — Direct register D
| ! l | | I | I
24 16 8 0 24 16 8 0
Register length in bits Register length in bits
These bits are the values shown and cannot be changed
Microprocessor differences
The 65C816 microprocessor differs from the 6502 in several ways. This section describes
some of those differences and their impact on program execution.
Chapter 10 The 65C816 Microprocessor 209

The registers

The 65C816 contains all the registers found in the 6502. In addition, the new
microprocessor has three additional registers that make it a more powerful chip. These
new registers provide additional addressing capability and greater data-handling
capability. The nine registers within the 65C816 are described below. (To learn how to use
the registers in the 65C816, see the Apple IIGS Programmer’s Workshop Assembler
Reference.)

The accumulator

The accumulator (also known as the Arithmetic Logic Unit—ALU) is a 16-bit register that
holds all values while arithmetic and logical calculations are performed. The entire 16 bits
of the accumulator in the 65C816 is available in both emulation mode as well as native
mode. The low half of the accumulator is called the A register, while the upper half is
referred to as the B register. Some documentation on the 65C816 refers to the entire 16-
bit register as the C register, but within this manual, we will refer to the register as the
accumulator (all 16 bits), or the A or B register (8-bit values within the accumulator).

The results of calculations within this register affect the status bits in the Program Status
register.

X Index register

The X Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the Program Status register x bit is set, the upper 8
bits of the X Index register are filled with 0’s that cannot be altered.

Y Index register

The Y Index register is a 16-bit register that is used as an address offset value when
calculating an effective address. When the Program Status register x bit is set, the upper 8
bits are filled with 0’s that cannot be altered.

Data bank register

In native mode, the data bank register is an 8-bit register that contains the most
significant byte of the effective 24-bit address specified in the X or Y Index registers
when only 16 bits of the address are provided. In emulation mode, it contains 0's that
cannot be altered.

210 Apple IIGs Hardware Reference

Stack pointer

In the earlier Apple IT computers, the stack was located at $100 through $1FF in memory.
In the 65C816, the stack can be located anywhere in bank $00, but may not exceed 64K.
The stack pointer contains the address of the next available stack location. The stack
“grows” in a downward direction (toward lower addresses just as with a 6502 stack);
PUSH and PULL instructions place and remove bytes from the “top” of the stack
(actually the lowest address).

Program Status register

The Program Status register is an 8-bit register that contains status bits that are set or
cleared as a result of the condition of the accumulator after each operation within the
accumulator. Also, this register contains the e, m, and x bits that control the emulation
mode and register size. This register remains 8 bits in size in both native and emulation
modes. Figure 10-3 shows the format of the Program Status register. Table 10-2 describes
these bits.

= Figure 10-3 Program Status register

e (emulation/native mode) —

c (
76)43210

n (negative result) J
v (overflow result)

I (emulation mode only) —

m (memory select) -

b (interrupt source flag) —

x (index register size) —

d (decimal mode) —

i (interrupts disabled) —

z (zero result) —

¢ (carry generated) —

Chapter 10 The 65C816 Microprocessor 211

Table 10-2

Bits in the Program Status register

Bit

Value

Description

212

n (negative result): This bit reflects the high bit of the
accumulator (bit 7 or bit 15, depending upon the state of
the m bit). When it is 0, the value in the register is a signed
positive value.

This bit will be set to 1 if the last operation in the
accumulator resulted in a negative value, which will set the
accumulator high bit.

v (accumulator overflow): This bit indicates whether or
not an overflow condition has occurred. An overflow is
when an arithmetic result is greater than can be
represented by the register (either 8 or 16 bits, depending
upon the state of the m bit). The overflow bit is set when
the carry out of the most significant bit is different from
the carry out of the next most significant bit. The value of
the overflow bit may also be described as the exclusive-
OR of the carry into and out of the most significant bit.
When this bit is 0, no overflow has occurred.

This bit will be set to 1 if the last operation in the
accumulator resulted in an overflow.

m (memory and accumulator size): Setting this bit to 0 will
set the accumulator size to 16 bits.

Setting this bit to 1 will set the accumulator size to 8 bits.
In emulation mode, this bit is permanently set to 1.

x (Index register size): Setting this bit to 0 will set the X
and Y Index register sizes to 16 bits. The Index register
size cannot be determined by reading this bit. (See “break
flag,” below).

Setting this bit to 1 will set the X and Y Index register
sizes to 8 bits. In emulation mode this bit is permanently
set to 1.

b (break flag): Reading bit 4 will reflect the state of an
interrupt. If a 0 is read in this bit position, the current
interrupt was caused by software. If a 1 is read in this bit
position, the current interrupt was caused by hardware.

Apple TIGS Hardware Reference

Table 10-2

Bits in the Program Status register (Continued)

Bit

Value

Description

d (decimal mode): Setting this bit to 0 instructs the
microprocessor to carry out mathematical calculations in
hexadecimal, representing values in hex values between $0
and $F.

Setting this bit to 1 instructs the microprocessor to treat
all mathematical computations as binary-coded decimal,
limiting the represented values to numbers between 0

and 9.

i (interrupts disabled): Setting this bit to 0 allows interrupt
requests to be serviced.

Setting this bit to 1 disables all interrupt requests that are
made.

z (zero result): This bit will be 0 if the last operation
resulted in a nonzero value. This flag is not limited to use
with arithmetic calculations.

This bit will be 1 if the last operation resulted in a value
of 0.

¢ (carry generated): This bit will be 0 if the last arithmetic
calculation did not result in a carry.

This bit will be 1 if the last arithmetic calculation
generated a carry.

e (emulation mode): This bit sits “behind” the carry bit
and is exchanged with the carry bit. Setting this bit to 1
places the microprocessor in 6502 emulation mode. In
this mode, the Index registers (X and Y) become 8 bits.
Stack commands and arithmetic calculations are 8-bit
operations. All others remain 16-bit operations.

Setting this bit to 1 places the microprocessor in native,
16-bit mode. All operations in this mode are 16-bit
operations.

Chapter 10 The 65816 Microprocessor

213

Program counter

The program counter is a 16-bit register that is concatenated with the program bank
register to obtain the resulting 24-bit address of the next instruction to be fetched for
execution. Note that the upper 8 bits of the program counter will not increment across
page boundaries. In emulation mode, this register retains its 24-bit size. (See the next
section, “Program Bank Register.”)

Program bank register

The program bank register is an 8-bit register that contains the most significant byte of
the 24-bit program counter address. In emulation mode this register is available, although
limited in its use.

Direct register

In the previous Apple computers, the zero page (called the direct page in the 65C816) was
located in the low $100 bytes of memory, and could not be moved. In the 65C816, the
direct page can be located anywhere in bank $00. The starting (low-byte) address of the
direct page is determined by the Direct register. This address can be any value from $0000
through $FF00. Although the direct page can begin anywhere in bank $00, there is a one-
cycle penalty when it does not begin on a page boundary (when the low byte of the Direct
register is not $00). In emulation mode (e bit = 1), the high 8 bits of this register are set to
$01, and all stack references are limited to page 1.

Emulating the 6502

As mentioned earlier, the 65C8106 is capable of emulating a 6502 microprocessor. In
emulation mode, the 65C816 will execute the complete 65C816 instruction set (which
includes all 6502 instructions), but many of these instructions will be of limited use
because of the reduced width of the registers. For instance, the X Index and Y Index
registers are 16 bits wide in native mode and are reduced to 8 bits in emulation mode.
Note in Figure 10-2 that certain bits in some of the registers are filled with specific values
that cannot be altered when the m bit is set.

To emulate the 6502 microprocessor, set the e bit to 1. You may then run programs that
were written for the 6502,

214 Apple IIGs Hardware Reference

Operating speed

The Apple I1GS can run the 65C816 processor at one of two speeds: 1.024 MHz and
2.8 MHz. The FPI controls the clock input signal to the microprocessor and selects the
appropriate speed as indicated by the clock speed bit in the Speed register.

Further reading

To learn more about programming the 65C816 microprocessor, read the following books:

Fischer, Michael. 65816/65802 Assembly Language Programming. Berkeley, CA:
Osborne/McGraw-Hill, 1986.

Eyes, David, and Ron Lichty. Programming the 65816. New York: Brady/Prentice-Hall,
1986.

65C816 data sheets

On the following pages are the data sheets from one of the two manufacturers of the
65C816 microprocessor.

Chapter 10 The 65C816 Microprocessor

215

216

W65C816

CMOS W65C816 and W65C802
16-Bit Microprocessor Family

Features

Advanced CMOS design for low power consumption and increased
noise immunity

Single 3-6V power supply, 5V specified

Emulation mode allows complete hardware and software
compatibility with 6502 designs

24-bit address bus allows access to 16 MBytes of memory space
Full 16-bit ALU, Accumulator, Stack Pointer, and Index Registers
Valid Data Address (VDA) and Valid Program Address (VPA) output
allows dual cache and cycle steal DMA implementation

Vector Puli (VP) output indicates when interrupt vectors are being
addressed. May be used to implement vectored interrupt design
Abort (ABORT) input and associated vector supports virtual memory
system design

Separate program and data bank registers allow program
segmentation or full 16-MByte linear addressing

New Direct Register and stack relative addressing provides capability
for re-entrant, re-cursive and re-locatable programming

24 addressing modes— 13 original 6502 modes, plus 11 new
addressing modes with 91 instructions using 255 opcodes

New Wait for Interrupt (WAI) and Stop the Clock (STP) instructions
further reduce power consumption, decrease interrupt latency and
allows synchronization with external events

New Co-Processor instruction (COP) with associated vector sup-
ports co-processor configurations, i.e., floating point processors
New block move ability

General Description

WDC's W65C802 and W65C816 are CMOS 16-bit microprocessors fea-
turing total software compatibility with their 8-bit NMOS and CMOS 6500~
series predecessors. The W65C802 is pin-to-pin compatible with 8-bit
devices currently available, while the W65C816 extends addressing to a
full 16 megabytes. These devices offer the many advantages of CMOS
technology, including increased noise immunity, higher reliability, and
greatly reduced power requirements. A software switch determines
whether the processor is in the 8-bit “emulation” mode, or in the native
mode, thus allowing existing systems to use the expanded features.

As shown in the processor programming model, the Accumulator, ALU,
X and Y Index registers, and Stack Pointer register have all been ex-
tended to 16 bits. A new 16-bit Direct Page register augments the Direct
Page addressing mode (formerly Zero Page addressing). Separate
Program Bank and Data Bank registers aliow 24-bit memory addressing
with segmented or linear addressing.

Four new signals provide the system designer with many options. The
ABORT input can interrupt the currently executing instruction without
modifying internal register, thus allowing virtual memory system design.
Valid Data Address (VDA) and Valid Program Address (VPA) outputs
facilitate dual cache memory by indicating whether a data segment or
program segment is accessed. Modifying a vector is made easy by
monitoring the Vector Pull (VP) output.

Note: To assist the design engineer, a Caveat and Application Infor-
mation section has been included within this data sheet.

W65C816 Processor Programming Model Pin Configuration
I 8BITS T 8BITS] - -
" - s 8,5 o8 £ t=N =l
” B S NQ a9 ROY 2
X Re&l's_‘t)er Hi (X) X Reglster Low] RS T L AR o rgaem
1 weno- 392935 maC « 37 T e20M)
- - T [wle® ~ws %[Inc
Y Register Hi) Y Reglster Low l svne | W ,,":E ; 335.;
(YH) L (YL) voo 37| voo " vooCT o 1300
A0 3|00 ==) 32{o1
]Stack Register Hi{)~Stack Reg Low I a1 »[or NS wsscaa 22
(SH)] - S |0z S nbo
3|03 =1 208
= 6502 l Accumulator L Accumulator ~ 2|04 AsCque nRoe
i (C) “ arfos s »For
Registers © . = ulor = A =P
rogram Bank Reg] Program Counter e RENRAARE R = oY =
oo an way eo R Srrfmasnac = L =0
£3283533%
F======- Direct Reg. Hi Direct Reg. Low :
i 00 [LReg Hi () e |
Lm0 (DH) 1 (DL) - N s
1;\‘-_’E§§\=3‘E§S§= =k wbse
g
Status Register Coding EEEEE awa ;E:::
_ : »
STATUS REG. (P) i »le A=
vPA 3 (AW i ¢ se
1]8] I—E—"—bEMULATION 1= 6502 wo | vea mr sDw
. 36 | DO/BAO voo] =]
NVMXD I 0=NATIVE N i = ovens e 33‘"-“’
™ yaq 34 |oBA2 [oveaz
L [—CARRY 1= TRUE .z » |overs pet= N =LY
ERO B © 22 |owmre
IRQZDISABLE 1 = SESS:BL:EZERO o oY ot =y rEo
= as 0 |pe/sas AsC1s 26 o7/mA7
DECIMAL MODE 1= TRUE xs » |oraar =) =P
INDEX REG. SELECT 1=8BIT,0=16BIT fERESRANERS =N =N
MEMORY SELECT 1-8BIT0=168IT 121233885538 ptt=] =
OVER FLOW 1= TRUE :
NEGATIVE 1= NEGATIVE For notes, refer to Packaging Information section.

Design Engineer: Willam D Mensch, Jr

THEWESTERNDESIGN CENTER,INC.

2166 East Brown Road * Mesa. Arizona 85203 « 602-962-4545

Apple 1IGS Hardware Reference

Advance Information Data Sheet:

This is advanced information and

specifications are subject to change

without notice.

Absolute Maximum Ratings: (Note 1)

Rating Symbol Value
Supply Volitage Voo -0.3V to +7.0V
Input Voltage VIN -0.3V to Voo +0.3V
Operating Temperature Ta 0°Cto +70°C
Storage Temperature Ts -55°C to +150°C

This device contains input protection against damage due to high static
voltages or electric fields; however, precautions should be taken to avoid

application of voltages higher than the maximum rating.

Notes:

1. Exceeding these ratings may cause permanent damage. Functional

operation under these conditions is not implied.

DC Characteristics (All Devices): Voo = 5.0V +5%, Vss = 0V, Ta = 0°C to +70°C

Parameter Symbol Min Max Unit
Input High Voltage o VIH

RES, RDY, IRQ, Data, SO, BE, 20 Voo + 0.3 \Y

@2 (IN), NMI, ABORT 0.7 Voo Voo + 0.3 Vv
Input Low Voltage — ViL

RES, RDY, IRQ, Data, SO, BE, -0.3 0.8 v

@2 (IN), NMi, ABORT -0.3 0.2 %
Input Leakage Current (ViN = 0 to VoD) N

RES, NMI, IRQ, SO, BE, ABORT (Internal Pullup) -100 1 uA

RDY (Internal Pullup, Open Drain) -100 10 uA

@2 (IN) _ -1 1 uA

Address, Data, R/W (Off State, BE = 0) -10 10 UA
Output High Voltage (loH =_-100uA) VoH

SYNC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA,

@1 (OUT), 2 (OUT) 0.7 Voo — v
Output Low Voltage (loL = 1.6mA) VoL

SYNC, Data, Address, R/W, ML, VP, M/X, E, VDA, VPA,

@1 (0OUT), ¢2 (OUT) — 04 \Y
Supply Current (No Load) loo 4 mA/MHz
Standby Current (No Load, Data Bus =Vss or Voo Is8 _

RES, NMI, IRQ, SO, BE, ABORT, ¢2 = Vob) 10 uA
Capacitance (ViIN = 0V, Ta = 25°C, f = 2 MHz)

Logic, ¢2 (IN) CiN - 10 pF

Address, Data, R/W (Off State) Crs — 15 pF

Pin Function Table
Pin Description Pin Description
A0-A15 Address Bus NC No Connection
ABORT Abort Input NMI Non-Maskable Interrupt
BE Bus Enable RDY Ready
@2 (IN) Phase 2 In Clock RES Reset
@1 (0UT) Phase 1 Out Clock R/W Read/Write
$2 (OUT) Phase 2 Out Clock SO Set Overflow
D0-D7 Data Bus (G65SC802) SYNC Synchronize
DO0/BA0O-D7/BA7 Data Bus, Multiplexed (G65SC816) VDA Valid Data Address
E Emulation Select VP Vector Pull
IRQ Interrupt Request VPA Valid Program Address
ML Memory Lock Voo Positive Power Supply (+5 Volts)
M/X Mode Select (Pm or Px) Vss Internal Logic Ground

Chapter 10 The 65C816 Microprocessor

217

AC Characteristics (W65C816): Voo = 5.0V + 5%, Vss = OV, Ta = 0°C to +70°C

| 2 MHz 4 MHz 6 MHz 8 MHz

' Parameter Symbol Min Max Min Max Min Max Min Max | Unit
Cycle Time tcve 500 DC 250 DC 167 DC 125 DC nS
Clock Pulse Width Low tPwL 0.240 10 0.120 10 0.080 10 0.060 10 uS
Clock Pulse Width High tPwH 240 * 120 x 80 = 60 x nS
Fall Time, Rise Time tF tR — 10 — 10 — 5 — 5 nS
A0-A15 Hold Time tAH 10 — 10 — 10 - 10 —_ nS
AD-A15 Setup Time tADS — 100 — 75 — 60 — 40 nS
BAO-BA7 Hold Time teH 10 — 10 — 10 — 10 — nS
BAO-BA7 Setup Time tBAs — 100 — 90 — 65 — 45 nS
Access Time tacc 365 — 130 — 87 — 70 — nS
Read Data Hold Time tDHR 10 - 10- - 10 - 10 — nS
Read Data Setup Time tosR 40 — 30 — 20 — 15 — nS
Write Data Delay Time tMDS — | 100 — 70 — 60 — 40 | nS
Write Data Hold Time toHw 10 — 10 - 10 — 10 — nS
Processor Control Setup Time tpcs 40 — 30 — 20 — 15 — nS
Processor Control Hold Time tPCH 10 — 10 — 10 — 10 — nS
E.MX Output Hold Time teEH 10 - 10 — 5 — 5 - nS
E.MX Output Setup Time tes 50 — 50 — 25 — 15 — nS
Capacitive Load (Address, Data, and R/W) Cext — 100 — 100 — 35 — 35 pF
BE to High Impedance State t8HZ — 30 — 30 — 30 — 30 nS
BE to Valid Data tevo - 30 - 30 - 30 — 30 nS

Timing Diagram (W65C816)

teve tF
2 (IN) ———— Yy
N A L]Sl____
- tPwi - tPWH ——l

R/W, ML, VP
A0-A15, VDA, VPA o

pt—————— tADS tacc |-t— tDSR
READ DATA E { N\ X
. BA0-BA7 DATA
BAO0-BA7 K_ READ
tDHR ——
- e 1BH

WRITE DATA
" BAO-BA7 \T.
BAO-BA7 W\ e W WRITE DATA
tOHW —— l.‘— e I‘— tMDS l & tpcs

:‘nl;); NMI, RES, ‘X)(:

. R U R S
—— teH N --1‘ tEH |t— tES

Timing Notes:
1. Voltage levels are VL - 0.4V, V1 > 2.4V
2. Timing measurement points are 0.8V and 2.0V

218 Apple I1Gs Hardware Reference

AC Characteristics (W65C802): Voo = 5.0V +5%, Vss = 0V, Ta = 0°C to +70°C

2 MHz 4 MHz 6 MHz 8 MHz
Parameter Symbol Min Max Min Max Min [Max Min Max Unit
Cycle Time tcve 500 DC 250 bC 167 DC 125 DC nS
Clock Pulse Width Low tPwL 0.240 10 0.120 10 0.080 10 0.060 10 uS 1
Clock Pulse Width High tPwH 240 % 120 o 80 = 60 b nS
Fall Time, Rise Time tF, tR — 10 - 10 — 5 - | 5 nS
Delay Time, 92 (IN) to ¢1 (OUT) tog1 — 20 — 20 — 20 — 20 nS
Delay Time, ¢2 (IN) to ¢2 (OUT) tog?2 — 40 — 40 — | 40 - 40 nS
Address Hold Time taH 10 - 10 — 10 — 10 - nS
Address Setup Time tans — [100 | — 75 | — 60 | — 40 | ns
Access Time tacc 365 — 130 — 87 — 70 — nS
Read Data Hold Time tOHR 10 — 10 - 10 — 10 — ns |
Read Data Setup Time tosmR 40 — 30 — 20 — 15 — nS
Write Data Delay Time tmos — w0 | — 0 | — 60 | — 40 [ns |
Write Data Hold Time torw 0| — 0 | — 0| — 0| — ns |
Processor Control Setup Time tpcs 40 - 30 — | 20 — 15 - nS
Processor Control Hold Time tPCH 10 - | w0 = 0 | - 10 — nS
Capacitive Load (Address, Data, and R/W) Cext — 100 | — | 100 — | 35 — 35 | pF
Timing Diagram (W65C802)
tcve P——— tF
92 (IN) ——
S?__
tr tewi tPwH
—-—1 |——— tR
#1(0UT) _—_ﬁ— tDe1 *
$2(0UT) —“\r 10e2 / ~\
|—— tAH —-1
R/W, SYNC, W
AO-A15
taDs tacc tosR
READ DATA > READ DATA
tOHR —’_L—— ——— r‘—— tMDS T
WRITE DATA _‘LL {" WRITE DATA
tDHW ——] L ——| f=e— tPCS
(1) K tPCH —a] |——
IRQ, NMI, RES, 1
ROY
— r— tpCH —:l |~s— tpCs

Timing Notes:
1. Voltage levels are VL < 0.4V, VH > 2.4V

2. Timing measurement points are 0.8V and 2.0V

Chapter 10 The 65C816 Microprocessor

219

220

Functional Description

The W65C802 offers the design engineer the opportunity to utilize both
existing software programs and hardware configurations, while also
achieving the added advantages of increased register lengths and faster
execution times. The W65C802's “ease of use” design and implementa-
tion features provide the designer with increased flexibility and reduced
implementation costs. In the Emulation mode, the W65C802 not only
offers software compatibility, but is also hardware (pin-to-pin) com-
patible with 6502 designs ... plus it provides the advantages of 16-bit
internal operation in 6502-compatible applications. The W65C802 is an
excellent direct replacement microprocessor for 6502 designs.

The W65C816 provides the design engineer with upward mobility and
software compatibility in applications where a 16-bit system configura-
tion is desired. The W65C816's 16-bit hardware configuration, coupled
with current software allows a wide selection of system applications. In
the Emulation mode. the W65C816 offers many advantages. including
full software compatibility with 6502 coding. In addition, the W65C816's
powerful instruction set and addressing modes make it an excellent
choice for new 16-bit designs.

Internal organization of the W65C802 and W65C816 can be divided into
two parts: 1) The Register Section, and 2) The Control Section. Instruc-
tions (or opcodes) obtained from program memory are executed by
implementing a series of data transfers within the Register Section.
Signals that cause data transfers to be executed are generated within the
Control Section. Both the W65C802 and the W65C816 have a 16-bit
internal architecture with an 8-bit external data bus

Instruction Register and Decode

An opcode enters the processor on the Data Bus, and is latched into the
Instruction Register during the instruction fetch cycle. This instruction
isthen decoded, along with timing and interrupt signals, to generate the
various Instruction Register control signals

Timing Control Unit (TCU)

The Timing Control Unit keeps track of each instruction cycle asitis ex-
ecuted. The TCU issetto zero each time an instruction fetch is executed,
and 1s advanced at the beginning of each cycle for as many cycles as is
required to complete the instruction. Each data transfer between regis-
ters depends upon decoding the contents of both the Instruction Regis-
ter and the Timing Control Unit

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In
addition to data operations, the ALU also calculates the effective address
forrelative and indexed addressing modes. The result of a data operation
is stored in either memory or an internal register. Carry, Negative, Over-
flow and Zero flags may be updated following the ALU data operation

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)

The Accumulator is a general purpose register which stores one of the
operands, or the result of most arithmetic and logical operations. In the
Native mode (E-0), when the Accumulator Select Bit (M) equals zero,
the Accumulator is established as 16 bits wide (A + B - C). When the
Accumulator Select Bit (M) equals one. the Accumulator is 8 bits wide
(A). In this case, the upper 8 bits (B) may be used for temporary storage
in conjunction with the Exchange Accumulator (XBA) instruction

Data Bank Register (DBR)

During modes of operation, the 8-bit Data Bank Register holds the de-
fault bank address for memory transfers. The 24-bit address is composed
of the 16-bit instruction effective address and the 8-bit Data Bank ad-

Apple IIGS Hardware Reference

dress. The register value is multiplexed with the data value and is present
on the Data/Address lines during the first half of a data transfer memory
cycleforthe W65C816. The Data Bank Register is initialized to zero dur-
ing Reset.

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions
using direct addressing. The effective bank zero address is formed by
adding the 8-bit instruction operand address to the Direct Register. The
Direct Register is initialized to zero during Reset.

Index (X and Y)

There are two Index Registers (X and Y) which may be used as general
purpose registers or to provide an index value for calculation of the ef-
fective address. When executing an instruction with indexed addressing,
the microprdcessor fetches the opcode and the base address, and then
modifies the address by adding the Index Register contents to the ad-
dress prior to performing the desired operation. Pre-indexing or post-
indexing of indirect addresses may be selected. in the Native mode (E=0),
both Index Registers are 16 bits wide (providing the Index Select Bit (X)
equals zero). If the Index Select Bit (X) equals one, both registers will be
8 bits wide, and the high byte is forced to zero.

Processor Status (P)

The 8-bit Processor Status Register contains status flags and mode select
bits. The Carry (C), Negative (N), Overflow (V), and Zero (Z) status flags
serve to report the status of most ALU operations. These status flags are
tested by use of Conditional Branch instructions. The Decimal (D), IRQ
Disable (I), Memory/Accumulator (M), and Index (X) bits are used as
mode select flags. These flags are set by the program to change micro-
processor operations.

The Emulation (E) select and the Break (B) flags are accessible only
through the Processor Status Register. The Emulation mode select flag
is selected by the Exchange Carry and Emulation Bits (XCE) instruction.
Table 1, W65C802 and W65C816 Mode Comparison, illustrates the
features of the Native (E=0) and Emulation (E=1) modes. The M and X
flags are always equal to one in the Emulation mode. When an interrupt
occurs during the Emulation mode, the Break flag is written to stack
memory as bit 4 of the Processor Status Register.

Program Bank Register (PBR)

The 8-bit Program Bank Register holds the bank address for all instruc-
tion fetches. The 24-bit address consists of the 16-bit instruction effective
address and the 8-bit Program Bank address. The register value is multi-
plexed with the data value and presented on the Data/Address lines during
the first half of a program memory read cycle. The Program Bank Regis-
ter is imitialized to zero during Reset. The PHK instruction pushes the
PBR register onto the Stack

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are
used to step the microprocessor through sequential program instruc-
tions. The register is incremented each time an instruction or operand is
fetched from program memory.

Stack Pointer (S)

The Stack Pointer is a 16-bit register which is used to indicate the next
available location in the stack memory area. It serves as the effective ad-
dressin stack addressing modes as well as subroutine and interrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routines and multiple-level interrupts. During the Emulation mode, the
Stack Pointer high-order byte (SH) is always equal to one. The bank ad-
dress for all stack operations is Bank zero.

— M
INDEX X
(16 BITS)
C;’ INDEX ¥ <—— ABORT (816)
) (16 BITS)
o —
w _ le—— JiRQ
5 STACK POINTER @ INTERRUPT
2 (S) (16 BITS) 5 Locic le— NMI -— Voo
A0-A7 ﬁ <: e
€ a —— RES - vss
Q o
: : 7N
(16 BITS) 5 —
:: 2
a
S
: >
z TIMING | o o poy
BE (816) @ x I CONT
¢
z
TRANSFER
@ SWITCHES
[=4
T H >
T ° i:
5 2
: E v
z 4 _
& @ 2
I @ ACCUMULATOR =
AB-A15 & S (C) (16 BITS) L @ o »2 (IN)
@ g (A) (8 BITS) =] w w cLOCK
7 2 (8) (8 BITS) 2 o Sw 9 GEN- |—& 1 (OUT) (802)
w < @ = S o ERATOR
3 3 2 & oy 82 e 42 (0UT) (802)
< T PROG. COUNTER 8 2 zz 35
>- (PC) (16 BITS) S H °H o
z 2 « = FZ
= z = o8 ol
& & z= 2
DIRECT (D) ; e :’—'a ;
E T oy K E s ga| % .
BE (816) - 8 < = R/W
#
a PROG. BANK (PBR), = SYNC (802)
w (8 BITS)
s ——= VPA (816)
@
A DATA BANK (DBR) VOA (816
2 (8 BITS) SYSTEM ®16
3 CONT _
vo-07 oz I\ | 3 PROCESSOR e Wi (16
DO0/BA0O-D7/BA7 (816) < STATUS (P)
H (8 BITS) .
E _J VP (816)
o L] DATA PREDECODE
g LATCH/ [—® E (816)
K PREDECODE
h INSTRUCTION REGISTER
-4 F—— M/X
2 (88ITS) (816)

BE (816)

I

SO (802)

Figure 1. Block Diagram — Internal Architecture

Signal Description

The following Signal Description applies to both the W65C802 and the
W65C816 except as otherwise noted

Abort (ABORT)—W65C816

The Abortinput is used to abort instructions (usually due to an Address
Bus condition). A negative transition will inhibit modification of any in-
ternal register during the current instruction. Upon completion of this
instruction, an interrupt sequence is initiated. The location of the aborted
opcode is stored as the return address in stack memory. The Abort vector
address is 00FFF8.9 (Emulation mode) or 00OFFE8 9 (Native mode). Note
that ABORT is a pulse-sensitive signal; i.e., an abort will occur whenever
there is a negative pulse (or level) on the ABORT pin during a ¢2 clock
Address Bus (A0-A15)

These sixteen output lines form the Address Bus for memory and /O
exchange on the Data Bus. When using the W65C816, the address lines
may be set to the high impedance state by the Bus Enable (BE) signal

Bus Enable (BE) —W65C816

The Bus Enable input signal allows external control of the Address and
Data Buffers, as well as the R/W signal. With Bus Enable high, the R/W
and Address Buffers are active. The Data/Address Buffers are active
during the first half of every cycle and the second half of a write cycle.
When BE is low, these buffers are disabled. Bus Enable is an asynchro-
nous signal.

Data Bus (D0-D7)—W65C802

The eight Data Bus lines provide an 8-bit bidirectional Data Bus for use
during data exchanges between the microprocessor and external mem-
ory or peripherals. Two memory cycles are required for the transfer of
16-bit values.

Data/Address Bus (D0/BA0-D7/BA7)—W65C816
These eightlines multiplex address bits BAO-BA7 with the data value. The

Chapter 10 The 65C816 Microprocessor

222

address is present during the first half of a memory cycle, and the data
value is read or written during the second half of the memory cycle. Two
memory cycles are required to transfer 16-bitvalues. These lines may be
set to the high impedance state by the Bus Enable (BE) signal

Emulation Status (E)—W65C816

The Emulation Status output reflects the state of the Emulation (E) mode
flag in the Processor Status (P) Register. This signal may be thought of
as an opcode extension and used for memory and system management

Interrupt Request (IRQ)

The Interrupt Request input signal is used to request that an interrupt
sequence be initiated. When the IRQ Disable (I) flag is cleared, a low in-
put logic level initiates an interrupt sequence after the current instruc-
tion is completed. The Wait for interrupt (WAI) instruction may be ex-
ecuted to ensure the interrupt will be recognized immediately. The Inter-
rupt Request vector address is 00FFFE,F (Emulation mode) or 00F FEE . F
(Native mode). Since IRQ 1s a level-sensitive input, an interrupt will
occur if the interrupt source was not cleared since the last interrupt
Also, no interrupt will occur if the interrupt source 1s cleared prior to
interrupt recognition

Memory Lock (ML)—W65C816

The Memory Lock output may be used to ensure the integrity of Read-
Modify-Write instructions in a multiprocessor system. Memory Lock
indicates the need to defer arbitration of the next bus cycle Memory
Lock is low during the last three or five cycles of ASL, DEC, INC, LSR.
ROL.ROR, TRB, and TSB memory referencing instructions, depending
on the state of the M flag

Memory/Index Select Status (M/X)—W65C816

This multiplexed output reflects the state of the Accumulator (M) and
Index (X) select flags (bits 5 and 4 of the Processor Status (P) Register
Flag M s valid during the Phase 2 clock negative transition and Flag Xis
valid during the Phase 2 clock positive transition. These bits may be
thought of as opcode extensions and may be used for memory and
system management

Non-Maskable Interrupt (NMI)

A negative transition on the NMI inputinitiates an interrupt sequence. A
high-to-low transition initiates an interrupt sequence after the current
instructionis completed. The Wait for Interrupt (WAI) instruction may be
executed to ensure that the interrupt will be recognized immediately. The
Non-Maskable Interrupt vector address is 00FFFA B (Emulation mode)
or 0OFFEA B (Native mode). Since NMI is an edge-sensitive input, an
interrupt will occur if there 1s a negative transition while servicing a pre-
vious interrupt. Also, no interrupt will occur if NMI remains low

Phase 1 Out (¢1 (OUT))—W65C802

This inverted clock output signal provides timing for external read and
write operations. Executing the Stop (STP) instruction holds this clock
in the low state

Phase 2 In (92 (IN))

Thisisthe system clock inputto the microprocessor internal clock gen-
erator (equivalentto @0 (IN) onthe 6502). During the low power Standby
Mode, ¢2 (IN) should be held in the high state to preserve the contents
of internal registers

Phase 2 Out (92 (OUT))—W65C802

This clock output signal provides timing for external read and write op-
erations. Addresses are vahd (after the Address Setup Time (Taps)) fol-
lowing the negative transition of Phase 2 Out. Executing the Stop (STP)
instruction holds Phase 2 Out in the High state

Read/Write (R/W)

When the R/W output signal is in the high state, the microprocessor is
reading data from memory or I/O *When in the low state, the Data Bus
contains valid data from the microprocessor which is to be stored at the
addressed memory location. When using the W65C816, the R/W signal
may be set to the high impedance state by Bus Enable (BE)

Ready (RDY)
This bidirectional signal indicates thata Wait for Interrupt (WAI) instruc-
tion has been executed allowing the user to halt operation of the micro-

Apple IIGS Hardware Reference

processor. A low input logic level will halt the microprocessor in its cur-
rent state (note that when in the Emulation mode, the W65C802 stops
only during a read cycle). Returning RDY to the active high state allows
the microprocessor to continue following the next Phase 2 In Clock
negative transition. The RDY signal is internally pulled low following the
execution of a Wait for Interrupt (WAI) instruction, and then returned to
the high state when a RES, ABORT, NMI, or IRQ external interrupt is
provided. This feature may be used to eliminate_interrupt latency by
placing the WAl instruction at the beginning of the IRQ servicing routine.
If the TRQ Disable flag has been set, the next instruction will be executed
when the IRQ occurs. The processor will not stop after a WAl instruction
if RDY has been forced to a high state. The Stop (STP) instruction has
no effect on RDY

Reset (RES)

The Reset input i1s used to initialize the microprocessor and start pro-
gram execution. The Resetinput buffer has hysteresis such thatasimple
R-C timing circuit may be used with the internal pullup device. The RES
signal must be held low for at least two clock cycles after Voo reaches
operating voltage. Ready (RDY) has no effect while RES is being held low.
During this Reset conditioning period, the following processor initializa-
tion takes place

Registers
D 0000 SH 01
DBR 00 XH 00
PBR 00 YH 00
N V. M X D I Z C/E
p [* 1 1 0o 1 * *nﬂ * - Not Initialized

STP and WAI instructions are cleared

Signals
£ 1 VDA -0
M/X 1 VP -1
RW 1 VPA -0
SYNC 0

When Reset is brought high, an interrupt sequence is initiated
* R/W remains in the high state during the stack address cycles.
* The Reset vector address is 00FFFC,D

Set Overflow (SO)—W65C802
A negative transition on this input sets the Overflow (V) flag, bit 6 of the
Processor Status (P) Register.

Synchronize (SYNC)—W65C802
The SYNC output is provided to identify those cycles during which the
microprocessor is fetching an opcode. The SYNC signal is high during
an opcode fetch cycle, and when combined with Ready (RDY), can be
used for single instruction execution

Valid Data Address (VDA) and
Valid Program Address (VPA)—W65C816

These two output signals indicate valid memory addresses when high
(logic 1), and must be used for memory or I/0 address qualification.

VDA VPA

0 0 Internal Operation—Address and Data Bus
available. The Address Bus may be invalid

0 1 Valid program address—may be used for program
cache control

1 0 Valid data address—may be used for data cache
control

1 1 Opcode fetch—may be used for program cache
control and single step control

Voo and Vss

Voo i1s the positive supply voltage and Vss is system logic ground. Pin 21
of the two Vss pins on the W65C802 should be used for system ground.

Vector Pull (VP)—W65C816

The Vector Pull output indicates that a vector location is being addressed
during an interrupt sequence. VP is low during the last two interrupt
sequence cycles, during which time the processor reads the interrupt
vector. The VP signal may be used to selectand prioritize interrupts from
several sources by modifying the vector addresses

Table 1. W65C816 Compatibility Issues

W65C816/802 |

wW65C02

NMOS 6502

1

. S (Stack)

Always page 1 (E = 1), 8 bits
16 bits when (E = 0)

Always page 1, 8 bits

Always page 1, 8 bits

2. X (X Index Register) Indexed page zero always in Always page 0 Always page 0
| pageO(E=1),
| Cross page (E = 0).

3. Y (Y Index Register)

Indexed page zero always in
page 0 (E = 1),
Cross page (E = 0)

Always page 0

Always page 0

Signatures 00-7F user defined
Signatures 80-FF reserved

Note 1. See Caveat section for additional information

|
{
4. A (Accumulator) 8 bits (M = 1), 16 bits (M = 0) i 8 bits 8 bits
5. P (Flag Registor) N. V, and Z flags valid in [N, V. and Z flags valid in N, V. and Z tlags invalid
decimal mode I decimal mode in decimal mode.
i D =0 after reset or interrupt | D - 0 after reset and D = unknown after reset
interrupt D not modified after interrupt
6. Timing I
A. ABS, X ASL, LSR. ROL, 7 cycles | 6cycles 7 cycles
ROR With No Page Crossing !
B. Jump Indirect 1
Operand = XXFF 5 cycles | 6cycles 5 cycles and invalid page
| crossing
C. Branch Across Page | 4dcycles(E=1) 4 cycles | 4cycles
i 3cycles (E =0) |
] 1
D. Decimal Mode No additional cycle | Add 1 cycle No additional cycle
7. BRK Vector OOFFFE.F (E = 1) BRK bit - 0 | FFFE,F BRK bit - 0 on stack FFFE,F BRK bit = 0 on stack |
on stack if IRQ, NMI, ABORT i f IRQ, NMI if IRQ, NMI
00FFE6, 7 (E = 0) X - X on | |
Stack always |
8. Interrupt or Break PBR not pushed (E - 1) Not available ‘ Not available
Bank Address RTI PBR not pulled (E = 1) | |
PBR pushed (E = 0) |
RTI PBR pulled (E = 0) |
— ——— - T - N -
9. Memory Lock (ML) ML = 0 during Read, Modify and | ML - 0 during Modify and Write Not available
| Write cycles
10. Indexed Across Page | Extra read of invalid address Extra read of last instruction Extra read of invalid address
Boundary (d).y; a.x; a.y | (Note 1) fetch |
11. RDY Pulled During Write ! Ignored (E = 1) for W65C802 only. | Processor stops i Ignored
Cycle | Processor stops (E - 0) | L
- - A S S . B S
12. WAI and STP Instructions. I Available | Available | Not available
13. Unused OP Codes | One reserved OP Code specified No operation Unknown and some "hang
| as WDM will be used in future up’ processor.
systems. The W65C816 performs |
a no-operation | 1 |
14. Bank Address Handling PBR = 00 after reset or interrupts | Not available l Not available]
— — — e i — o
15. R/W During Read-Modify- E = 1. R/W - 0 during Modify and | R/W - 0 only during Write cycle R/W - 0 during Modify and
Write Instructions Write cycles Write cycles
| E =0, R/W:=0onlyduring
| Write cycle | |
T . PNV T N - .
16. Pin7 i WB5C802 - SYNC SYNC SYNC 1‘
| W65C816 - VPA | |
17. COP Instruction } Available Not available { Not available
| |
|

Chapter 10 The 65C816 Microprocessor

223

224

W65C802 and W65C816
Microprocessor Addressing Modes

The W65C816 is capable of directly addressing 16 MBytes of memory.
This address space has special significance within certain addressing
modes, as follows:

Reset and Interrupt Vectors
The Reset and Interrupt vectors use the majority of the fixed addresses
between 00FFEO and O0FFFF.

Stack

The Stack may use memory from 000000 to 00FFFF. The effective ad-
dress of Stack and Stack Relative addressing modes will always be within
this range.

Direct

The Direct addressing modes are usually used to store memory registers
and pointers. The effective address generated by Direct, Direct, X and
Direct,Y addressing modes is always in Bank 0 (000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long,
Absolute, Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
instructions that affect the Program Bank register are: RTI, RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bit effective addresses:

Direct Indexed Indirect (d,x)

Direct Indirect Indexed (d),y

Direct Indirect (d)

Direct Indirect Long [d]

Direct Indirect Long Indexed [d],y

Absolute a

Absolute a,x

Absolute a,y

Absolute Long al

Absolute Long Indexed al,x

Stack Relative Indirect Indexed (d,s),y

The following addressing mode descriptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802
and W65C816 microprocessors. The “long” addressing modes may be
used with the WB5C802; however, the high byte of the address is not
available to the hardware. Detailed descriptions of the 24 addressing
modes are as follows:

1. Immediate Addressing—#

The operand is the second byte (second and third bytes whenin the
16-bit mode) of the instruction.

2. Absolute—a
With Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: [opcode J addrl] addrh]
Operand ‘ ‘ | ’
Address: DBR addrh addrl

3. Absolute Long—ali
The second, third, and fourth byte of the instruction form the 24-bit
effective address.

lnstruction:l opcode l addri [addrh T baddr }
Operand [! ‘

Address: baddr addrh addrl

4. Direct—d

The second byte of the instruction is added to the Direct Register
(D) to form the effective address. An additional cycle is required

Apple 1IGS Hardware Reference

©

when the Direct Register is not page aligned (DL not equal 0). The
Bank register is always 0.

Instruction: opcode [offset I
‘ Direct Register (
+ ‘ offset |
Operand [| ‘
Address: 00 effective address

. Accumulator—A

This form of addressing always uses a single byte instruction. The
operand is the Accumulator.

. Implied—i

Implied addressing uses a single byte instruction. The operand is
implicitly defined by the instruction.

. Direct Indirect Indexed—(d),y

This address mode is often referred to as Indirect,Y. The second
byte of the instruction is added to the Direct Register (D). The 16-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Register is
added to the base address to form the effective address.

Instruction: opcode [offset q
| Direct Register |
+ r offset |
J 00 | direct address |
then:
| 00 | (direct address) |
+| per |
| base address |
. 1 | YReg |
Operand | |
Address: effective address

Direct Indirect Long Indexed—[d],y

With this addressing mode, the 24-bit base address is pointed to by
the sum of the second byte of the instruction and the Direct
Register. The effective address is this 24-bit base address plus the Y
Index Register.

Instruction: opcode I offset |
’ Direct Register |
+ | offset |
| 00 I direct address I
then:
| (direct address) |
. | | YReg |
Operand ‘ |
Address: effective address

Direct Indexed Indirect—(d,x)

This address mode is often referred to as Indirect,X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Register contains the high-
order 8 bits of the effective address.

10.

1.

12.

13.

Instruction: opcode I offset]
’ Direct Register '
+ | offset ‘
f direct address $
+ ‘ i X Reg \
! 00 | address \
then:
r 00 (address) !
+ ‘ DBR 1
Operand | ‘
Address: effective address

Direct Indexed With X—d,x

The second byte of the instruction is added to the sum of the Direct
Register and the X Index Register to form the 16-bit effective
address. The operand is always in Bank 0.

Instructlon:[opcode I offset]

J Direct Register ’

+ ‘ offset ‘

‘ direct address ‘

X Reg ’

'
+ |
1

Operand |
Address: 00 |

Direct Indexed With Y—d,y

The second byte of the instruction is added to the sum of the Direct
Register and the Y Index Register to form the 16-bit effective
address. The operand is always in Bank 0

effective address ‘

Imlrucllon:l opcode] offset]

‘ Direct Register 1

+ | offset |

| direct address

o | YReg |

Operand °
Address:] 00 ‘

Absolute indexed With X—a,x

The second and third bytes of the instruction are added to the
X Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
effective address.

effective address]

Instruction: { opcode I addrl J addrh]

| ©oBR | adarh | adan |

o | XReg |

Operand | ‘
Address: effective address

Absolute Long Indexed With X—al,x

The second, third and fourth bytes of the instruction form a 24-bit
base address. The effective address is the sum of this 24-bit address
and the X Index Register.

14.

15.

16.

17.

18.

Chapter 10 The 65C816 Microprocessor

Instruction: 1 opcode I addrl 1 addrh 1 baddr]
| bagar | addrn | adan |
+ | i X Reg |
Operand ‘ 1
Address: effective address

Absolute Indexed With Y—a,y

The second and third bytes of the instruction are added to the
Y Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
effective address.

Instruction: | opcode | addrl l addrh _]

| oer | addarh | adar |

. | YReg |

Operand ‘ ’
Address: effective address

Program Counter Relative—r

This address mode, referred to as Relative Addressing, is used only
with the Branch instructions. If the condition being tested is met,
the second byte of the instruction is added to the Program Counter,
which has been updated to point to the opcode of the next instruc-
tion. The offset is a signed 8-bit quantity in the range from -128 to
127. The Program Bank Register is not affected.

Program Counter Relative Long—rl

This address mode, referred to as Relative Long Addressing. is used
only with the Unconditional Branch Long instruction (BRL) and the
Push Effective Relative instruction (PER). The second and third
bytes of the instruction are added to the Program Counter, which
has been updated to point to the opcode of the next instruction. With
the branch instruction, the Program Counter is loaded with the
result. With the Push Effective Relative instruction, the result is
stored on the stack. The offset is a signed 16-bit quantity in the range
from -32768 to 32767. The Program Bank Register is not affected.

Absolute Indirect—(a)

The second and third bytes of the instruction form an address to a
pointerin Bank 0. The Program Counter is loaded with the first and
second bytes at this pointer. With the Jump Long (JML) instruction,
the Program Bank Register is loaded with the third byte of the
pointer.

Inllmcllon:l opcode [addr! [addrh]

Indirect Address = l 00 | addrh ‘ .addrl

New PC = (indirect address)
with JML:

New PC = (indirect address)

New PBR = (indirect address +2)

Direct Indirect—(d)

The second byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the effective
address.

Instruction: | opcode | offset |

I Direct Register ‘

offset ‘

. |
| 00 f direct address |
then:
| 00 ’ (direct address) |
+ l DBR 1
Operand
Address: | effective address I

225

19.

20.

21.

22.

226

Direct Indirect Long—[d]

The second byte of the instruction is added to the Direct Register to
form a pointer to the 24-bit effective address.

Imlvucﬂon:| opcode 1 offset]

‘ Direct Register !

oftset |

. \
‘ 00 ‘ direct address |
then:
Operand
Address: ‘ (direct address) ‘
Absolute Indexed Indirect—(a,x)

The second and third bytes of the instruction are added to the
X Index Register to form a 16-bit pointer in Bank 0. The contents of
this pointer are loaded in the Program Counter. The Program Bank
Register is not changed

Instruction: opcode [addrl 1 addrh J
! addrh ‘ addrl ‘
‘ E X Reg |
& PBR ‘ address ‘
then
PC = (address)
Stack—s

Stack addressing refers to all instructions that push or pull data
from the stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad-
dress is always 0. Interrupt Vectors are always fetched from Bank 0

Stack Relative—d,s

The low-order 16 bits of the effective address is formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the effective address is always zero. The relative
offset is an unsigned 8-bit quantity in the range of 0 to 255

|ns(ruction:{ opcode l oftset]

[Stack Pointer ‘
+
1

Operand
Address: 00 |

offset \

effective address ‘

Apple 11Gs Hardware Reference

23.

24.

Stack Relative Indirect Indexed—(d,s),y

The second byte of the instruction is added to the Stack Pointer to
form a pointer to the low-order 16-bit base address in Bank 0. The
Data Bank Register contains the high-order 8 bits of the base ad-
dress. The effective address is the sum of the 24-bit base address
and the Y Index Register.

Instruction: [opcode [offset |
] Stack Pointer |
+ l offset |
’ 00 ' S + offset }
then:
| S + offset |
«| oer |
1 base address ‘
N | { YReg |
Operand
Address: | effective address |

Block Source Bank, Destination Bank—xyc

This addressing mode is used by the Block Move instructions. The
second byte of the instruction contains the high-order 8 bits of the
destination address. The Y index Register contains the low-order 16
bits of the destination address. The third byte of the instruction
contains the high-order 8 bits of the source address. The X Index
Register contains the low-order 16 bits of the source address. The
C Accumulator contains one less than the number of bytes to move.
The second byte of the block move instructions is also loaded into
the Data Bank Register.

Instruction: opcode [dstbnk [srcbnk
dstbnk - DBR
Source
Address: \ srcbnk ‘ X Reg |
Destination
Address: ‘ DBR 1 Y Reg |

Increment (MVN) or decrement (MVP) X and Y.
Decrement C (if greater than zero), then PC+3 - PC.

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRA
BRK
BRL
BvVC
BVS
CLC
CLD
CLI
CLv
CMP
coPr
CPX
cpy
DEC
DEX
DEY
EOR
INC
INX
INY
JML
JMP
JSL
JSR
LDA
LDX
LDY
LSR
MVN
MvVP
NOP
ORA
PEA

PEI

PER

Table 2. W65C802 and W65C816 Instruction Set—Alphabetical Sequence

Add Memory to Accumulator with Carry
“AND" Memory with Accumulator

Shift One Bit Left, Memory or Accumulator
Branch on Carry Clear (Pc = 0)

Branch on Carry Set (Pc = 1)

Branch if Equal (Pz = 1)

Bit Test

Branch if Result Minus (PN = 1)

Branch if Not Equal (Pz = 0)

Branch if Result Plus (PN = 0)

Branch Always

Force Break

Branch Always Long

Branch on Overflow Clear (Pv - 0)

Branch on Overflow Set (Pv - 1)

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Coprocessor

Compare Memory and Index X

Compare Memory and Index Y

Decrement Memory or Accumulator by One
Decrement Index X by One

Decrement Index Y by One

“Exclusive OR" Memory with Accumulator
Increment Memory or Accumulator by One
Increment Index X by One

Increment Index Y by One

Jump Long

Jump to New Location

Jump Subroutine Long

Jump to New Location Saving Return Address
Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)
Block Move Negative

Block Move Positive

No Operation

“OR" Memory with Accumulator

Push Effective Absolute Address on Stack (or Push Immediate
Data on Stack)

Push Effective Indirect Address on Stack (or Push Direct
Data on Stack)

Push Effective Program Counter Relative Address on Stack

For alternate mnemonics, see Table 7.

PHA Push Accumulator on Stack

PHB Push Data Bank Register on Stack

PHD Push Direct Register on Stack

PHK Push Program Bank Register on Stack

PHP Push Processor Status on Stack

PHX Push Index X on Stack

PHY Push Index Y on Stack

PLA Pull Accumulator from Stack

PLB Pull Data Bank Register from Stack

PLD Pull Direct Register from Stack

PLP Pull Processor Status from Stack

PLX Pull Index X from Stack

PLY Pull Index Y form Stack

REP Reset Status Bits

ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return from Interrupt

RTL Return from Subroutine Long

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

SEP Set Processor Status Bite

STA Store Accumulator in Memory

STP Stop the Clock

STX Store Index X in Memory

STY Store Index Y in Memory

STZ Store Zero in Memory

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y

TCD Transfer C Accumulator to Direct Register
TCS Transfer C Accumulator to Stack Pointer Register
TOC Transfer Direct Register to C Accumulator
TRB Testand Reset Bit

TSB Test and Set Bit

TSC Transfer Stack Pointer Register to C Accumulator
TSX Transfer Stack Pointer Register to Index X
TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Pointer Register
TXY Transfer Index X to Index Y

TYA Transfer Index Y to Accumulator

TYX Transfer Index Y to Index X

WAI Wait for Interrupt

WDM Reserved for Future Use

XBA Exchange B and A Accumulator

XCE Exchange Carry and Emulation Bits

Table 3. Vector Locations

E 1

OOFFFEF IRQ/BRK Hardware/Software
OOFFFC.D -RESET Hardware
OOFFFA.B ~NMI Hardware
OOFFF89 -~ABORT Hardware
OOFFF6.7 - (Reserved)

OOFFF45 -COP Software

E 0

OOFFEE.F ~IRQ Hardware
OOFFEC.D —(Reserved)
OOFFEA.B —~NMI Hardware
OOFFE89 —~ABORT Hardware
OOFFEB.7 —BRK Software
OOFFE45 —COP Software

The VP output is low during the two cycles used for vector location access

- When an interruptis executed, D 0 and |

1.1n Statu

s Register P

Chapter 10 The 65C816 Microprocessor

Table 4. Opcode Matrix

™M M
s s
D LSD D
0 1 2 3 4 5 6 7 8 9 A B c D E F
o |BRKs|ORA (d.x) | COPs | ORAds | TSBd | ORAd | ASLd | ORA[d] | PHPs| ORA# | ASLA|PHDs| TSBa | ORAa | ASLa | ORAal o
2 8 2 6 2%*g 2%a 2% | 23|25 2%g 13| 221 21%4| 3% 34| 36| a*s
1| BPL [ORA(d).y |ORA (d)|ORA (d.s).y| TRBd |ORAdx[ASLdx| ORA[d]Ly | CLCi |ORAay|INCA|TCSi| TRBa |ORAax|ASLax|ORAalx]
22 25 2%s 2%7 2%s | 24 |26 2%g 1234 1%2]1*%2] 3% 34| 37| a*s
o |JSRa |AND (d.x) | JSLal | ANDds | BITd [ANDd [ROLd | AND(d] | PLPs | AND# |ROLA|PLDs| BITa | ANDa | ROLa| ANDal 5
36 2 6 4*sg 2%*a 23|23 |25 2%6 |1 4| 22 |1 2[1%s| 3 4 34| 36| a*s
3| BMIr | AND (d).y |AND (d) [AND (ds).y | BIT d.x [AND d.x|ROL d.x| AND [d].y | SEC 1 [AND ay|DEC A[TSCi| BITax |AND ax|ROL ax|AND al.x 3
22 2 5 2%s 2%7 2% | 24 |26 2%g 12| 34 1% |1%2] 3% 34 | 37| a*s
4| RTls [EOR(dx) | WOM | EORds |MVPxyc| EORd | LSRd | EOR[d] |PHAs| EOR# |LSRA[PHKs| JMPa | EORa | LSRa | EORal 4
17 2 6 2%2 2%4 3*7 | 23 |25 2%6 13221 2(1*3] 33 34 (36| 4%*s
5 |BYC | EOR (d)y [EOR (0) EOR (d:s).y IMVN xyc|EOR d.x |LSR d.x | EOR [d].y | CLI1 [EORay|PHYs[TCD /| JMPal [EORax|LSRax|EORalx s
2 2 25 2°%s 2%7 3*7 1 24 |26 2%g 12 34 [1%°3]1%2] a*a 34 | 37| a*s
6 |RTSs |ADC (d.x) | PERs | ADCds | STZd | ADCd [RORd | ADC(d] | PLAs| ADC# |[RORA|RTLs| JMP(a) | ADCa | RORa| ADC al s
16 2 6 3*s 2%4 2°3 | 23 |25 2%6 1tal 22 |1 2(1*| 35 34 | 36| 4%s
7 |BVS T |ADC (d)y |ADG (d)|ADC (ds).y | STZ d.x [ADC d.x ROR d.x| ADC,[dly | SEI1 |ADCay| PLY s [TDC i |[JMP (ax) | ADC a.x |ROR a.x| ADC al.x ;
2 2 25 2%s 2%*7 2% | 24 |26 2%6 12| 34 [1% |1%2| 3%s 34 | 37| a%*s
g |BRAT[STA(dx) | BRLr | STAds | STYd | STAd | STXd | STA[d] |DEY/| BIT# | TXAI|PHBs| STva | STAa | STXa | STAal 8
2%2| 28 3%3 2% 23 |23 |23 2% |1 2| 2% |1 2|1%3| 3 4 34 | 34| a%*s
o |BCCr|STA(Q)y |STA(d) | STA@S)y|STYdx [STAdx [STXdy STAJdly | TYA1|STAay| TXS 1 |TXY 1| STZa |STAax (STZax|STAalx| g
2 2 2 6 2%s 2% 24 |24 |24 2%6 12|35 (1 2|1*2| 3%4 35 | 3% | a*s
A |LDY#|LDA(dx) | LDX# | LDAds | LDYd |LDAd [LDXd | LDA[d] | TAY: | LDA# | TAX: |PLBs| LDYa | LDAa | LDXa | LDAal A
2 2 206 2 2 2%a4 23 |23 |23 2*6 1222 |1 2|1*a| 3 a 34 | 34| a*s
g |BCS | LDA(d)y [LDA(9) LDA (d's).y | LOY d.x [LDA dx [LDX dy | LDAJd]y [CLV1 [LDAay| TSX1 [TYX1 | LDYax |LDAax |LDXay|LDAalx 8
2 2 2 5 2%s 2%z 24 | 24 |24 2%6 12 34 |1 2]|1*2| 3 4 34 | 34| a*s
¢ |CPY# [CMP(d.x) | REP# | CMPds | CPYd |CMPd |DECd | CMP(d] | INY: | CMP# | DEXi|WAIi | CPYa | CMPa | DECa | CMPal c
22 2 6 2%3 2%*a 2 3 23|25 2%g 222 |1 2(1%°3] 3 4 3 4 36| a¥s
p |BNEr |CMP(d)y |CMP (d)|CMP ds).y | PEl's |CMP d.x|DEC d.x| CMP (dly | CLD 1 [CMP ay| PHX's |STP 1 | ML (a) | CMP ax|DEC a.x|CMP al X o
2 2 2 5 2%s 2%*7 2*6 | 24 | 26 2%s 1t 2] 34 |1%°3|1%°3| 3%*s 34 | 37| a*s
g |CPX# |SBC (dx) | SEP# | SBCds | CPXd | SBCd | INCd | SBC[d] | INXi | SBC# | NOPi|XxBAI| CPXxa | SBCa | INCa | SBCal e
2 2 2 6 2%3 2*a 2 3 23 |25 2%g v2l 221 21*3| 34 3 4 36 | 4a%s
F |BEQr |SBC (d)y |SBQ (d)|SBC (ds)y | PEAs |SBCdx [INCdix | SBC[dly | SED1 [SBCay| PLXs |XGE 1 [JSR (ax) | SBC ax | INC ax | SBC al.x c
22 25 2®s 2%7 3*s | 24 |28 2% 12 34 | 1%a|1*2| 3% 3 4 37| a*s
= - —1— e R
0 1 2 3 4 5 6 7 8 9 A B c D E F
symbol | addressing mode symbol | addressing mode
" immediate (d] direct indirect long
A accumulator [d]).y direct indirect long indexed
r program counter relative a absolute
l program counter relative long ax absolute indexed (with x)
) imphed ay absolute indexed (with y)
s stack al absolute long
d direct al.x absolute long indexed
d.x direct indexed (with x) ds stack relative
dy direct indexed (with y) (d.s)y stack relative indirect indexed
(d) direct indirect (a) absolute indirect
(d.x) direct indexed indirect (a.x) absolute indexed indirect
(d).y direct indirect indexed xycC block move
Op Code Matrix Legend
INSTRUCTION ADDRESSING
MNEMONIC * - New W65C816/802 Opcodes MODE
. o New W65C02 Opcodes
BASE Blank - NMOS 6502 Opcodes BASE
NO. BYTES NO. CYCLES

228 Apple IIGS Hardware Reference

Table 5. Operation, Operation Codes, and Status Register

PROCESSOR
MNE || 3 STATUS CODE MNE-
. JHEMNNMNES = |7 65 4321 0] MONC
MONIC * = <|-|T|T|Clo|c|e RS =388 |8|« |5 |3 (X
A i ot Al B el Bl Il el B S 2 S e M N A M O S A
OPERATION 1(2f3]4[s |6 |7 [8[9[w[n|12]13[1af15]16][17[18[19]20 (21 [22[23[24|NV 1 B D | z Cle= 1
ADC 696D]6F [65 71 |77[61[75 7D [7F |79 72 [67 63 [73 N V zZcC ADC
AND) 29|2D | 2F |25 31(37]2135 3D |3F |39 32 (27 23 |33 N z AND
ASL C- %g 0] -o OE 06 |0A 16 1E N zc ASL
BCC BRANCH IFC=0 90 BCC
BCS BRANCH IF C = 1 B0 BCS
BEQ BRANCHIF Z = 1 FO BEQ
BIT AAM (NOTE 1) 89 | 2C 24 34 3c M: Me z BIT
BMI BRANCH IF N = 1 30 BMI
BNE BRANCH IF D0 BNE
BPL BRANCH IF N = 0 10 8PL
BRA BRANCH ALWAYS 80 ® BRA
BRK BREAK (NOTE 2) 00 e 0 | BRK
BRL BRANCH LONG ALWAYS 82 * BRL
BVC BRANCH IF V = 0 50 BVC
BVS BRANCH IF V = 1 70 BvS
CLC 0-C 18 0 cLC
CcLD 0-D 08 ! 0 CLD
cL 0-1 58 0 cut
CLV 0~V 88 0 cLv
CMP A-M C9[CD|CF|Cs D1(D7|C1|D5 DD [DF | D9 D2 [c7 C3 (D3 N zcC CMP
cop CO-PROCESSOR ; 02 01 * CoP
CPX X-M E0|EC E4 N zcC CPX
CPY Y-M Co(CcC c4 N zcC CPY
DEC DECREMENT CE C6 [3A D6 DE N z DEC
DEX X-1-X CA N z DEX
DEY Y-1-Y 88 N z DEY
EOR AYM — A 49|4D| 4F | 45 51|57 41|55 5D |SF | 59 52 |47 43 |53 N z EOR
INC INCREMENTS EE E6 |1A F6 FE N z INC
INX X+1—=X E8 . N z INX
INY Ye1-Y c8 N z INY
JML JUMP LONG TO NEW LOC DC * UML
JMP JUMP TO NEW LOC. 4C|[sC 6C 7C JMP
JSL JUMP LONG TO SUB 22 JstL
JSR JUMP TO SUB 20 FC JSR
LDA M- A A9| AD| AF | A5 81|B7|A1|B5 BD |BF | B9 B2 |A7 A3 (B3 N z LDA
LDX M A2[AE A6 B6 BE N z LDX
Loy M § AO|AC A4 84 BC N z LDY
LSR 0- 0] -C 4E 46 [4A 56 SE 0 zc LSR
MVN M EGATIVE 54 * MVN
MVP M —~ M POSITIVE 44 * MVP
. NOP NO OPERATION EA NOP
ORA AVM - A 09| 0D | OF | 05 11 {17]01] 15 10 |1F [19 12 |07 03 |13 N z ORA
PEA Mpc + 1, Mpc +2 - Ms - 1, Ms Fa * PEA
S-2 -8
PEI M(d). M(d + 1) - Ms -1, Ms D4 * PEI
S-2 -5
PER Mpc + rl, MpC ¢ 1l + 1 - Ms - 1, Ms. 62 * PER
S-2 -5
PHA A -MsS-1-§ 48 PHA
PHB DBR - Ms,S-1-S ! 88 PHB
PHD D—~Ms,Ms-1,5-2 -5 o8 * PHD
PHK PBR - Ms,S-1-S 48 * PHK
PHP P-~Ms,S-1-8§ 08 PHP
PHX X—~Ms S-1-§ DA ® PHX
PHY Y ~-MsS-1-8 SA o PHY
PLA S+1-S5Ms~A 68 N z PLA
PLB S+1 -85 Ms - DBR AB N Z |* PLB
PLD S+2-S,Ms-1,Ms ~D 28 N Z - |* PLD
PLP S+1-5 Ms~P 28 NVMXD I ZC PLP
PLX S+1 -8 Ms ~X FA N z PLX
PLY §+1-SMs-¥ 7A N z PLY
REP MAP - P c2 NVMXDI ZCl* ReEpP
ROL -c 2E 26 |2A 36 3E N zc ROL
ROR C - m_] 6E 66 [6A 76 7€ N z c ROR
RTI RTRN FROM INT 40 NVMXDI1 ZC RTI
RTL RTRN FROM SUB. LONG 68 * RTL
RTS RTRN SUBROUTINE 60 RTS
SBC A-M-C-A E9[ED| EF | ES F1|F7|E1|F5 FD |FF| F9 F2 |E7 €3 [F3 NV zcC SBC
SEC 1-C 38 1 SEC
SED | 1-D Fa | 1 SED
SEI 11 78 1 SEI
SEP MVP - P €2 NVMXD I ZCl* SEp
STA A-M 8D| 8F | 85 (9197/81]95 9D | 9F | 99 92 | 87 83 |93 STA
STP STOP (1 - ¢2) DB e sSTP
STX X - 8E 86 £ STX
STY Y -M 8C 84 : 94 STY
sTZ 00 ~ M 9C 64 74 9E e sSTZ
TAX A~ X AA N z TAX
TAY A-Y A8 N z TAY
TCD Cc-D 58 N z |* T1CD
TCS c-s 18 * TCS
TDC D-C 78 N Z |* 7TDC
TRB 1C 14 z e TRB
TSB AVM - M oC 04 z e TsB
TsC s-cC 38 N z |* TsC
TSX S - X BA N z TSX
TXA X~A 8A z TXA
TXS x-S 9A XS
TXY X =Y 98 N Z % Txy
TYA Y -A 98 N z TYA
TYX Y - X B8 N * TYX
WAI 0 - RDY cs o WA
WDM NO OPERATION (RESERVED) 42 * WDM
XBA B—~A EB N z _|* xBa
XCE C——E FB E|{* XCE
Notes 3 % - New WB5C816/802 Instructions - Add vV OR
1. Bitimmediate N and V flags not affected. When M = 0, My5 - N and M14 -V, ® = New W65C02 Instructions - Subtract ¥ Exclusive OR
2. Break Bit (B) in Status register indicates hardware or software break Blank = NMOS 6502 A AND

Chapter 10 The 65C816 Microprocessor 229

Table 6. Detailed Instruction Operation

ADDRESS MODE CYCLE VP. ML,VDA.VPA ADDRESS BUS DATABUS R/W ADDRESS MODE CYCLE VP. ML,VDA,VPA ADDRESS BUS DATABUS R/W
1 immediate # 1 11 1 1 PBRPC Op Code 1 7 Durect Ingirect Indexed (d).y ' 11 1 1 PBRPC Op Code 1
(LDY CPY CPX LDX ORA 2 Y10 1 PBRPCH1 0L ' (ORA AND.EOR ADC. 2 110 1 PBRPCe! 00 1
AND EORADCBITLDA. (1)8) 2a 11 0 1 PBRPC-2 IDH 1 STA.LDA.CMP.SBC) (2 2a 11 0 0 PBRPC! 10 1
CMP SBC REP SEP) (8 Op Codes) 3 11 1 0 0D+DO AAL 1
(14 Op Codes) (2 bytes) 4 11 1 0 00+DO0-1 AAH 1
(2and 3 bytes) (5.6.7 ana 8 cycles) (4 4a 1 1 0 0 DBRAAHAAL-YLIO 1
(2.ana 3 cycles) s 10 1 0 DBRAA-Y Datatow 1.0
2a Absolute f Y 1 1y PBRPC Op Code 1 () sa 1 1 1 0 DBRAA:Y:1 DataHigh 10
(BITSTYSTZLDY 2 L} 0 1 PBRPC-1 AAL 1 8 Direct Ingirect 1 1o 1 1 PBRPC Op Code 1
CPY.CPX STX LDX 3 11 0 1 PBRPC-2 AAH 1 Indexed Long (d].y 2 11 0 1 PBRPCH1 00 1
ORA.AND EOR ADC 4 11 1 0 DBRAA Datatow 10 (ORA AND EOR ADC 20 2a 1 1 0 0 PBRPC:t 10 1
STA.LDA CMP SBC) 1) 4a AN 10 DBRAA-1 Data High 10 STA.LDA.CMP.SBC) 3 A 10 00-DO AAL 1
(18 Op Codes) (8 Op Codes) 4 11 1 0 0D+DO+1 AAH 1
(3 bytes) (2 bytes) 5 AN 10 0D+DO-2 AAB 1
(4ana s cycles) (6.7 and 8 cycles) 6 111 0 AABAA-Y Daatow 10
2b Absolute (R-M-W) a 1 1 1 1 PBRPC Op Code 1 (1) 6a LN 10 AABAA-Y+1 Data High 10
2 110 1 PBRPC-1 AAL 1 9 Direct Indexed Indirect (d.x) ' 11 1 1 PBRPC Op Code 1
(ASL ROL LSR ROR 3 11 0 1 PBRPC-2 AAH 1 (ORA AND EOR ADC 2 T 0 1 PBRPCH 00 1
DEC INC TSB.TR8) 4 10 1 0 DBRAA Data Low 1 STA LDA CMP SBC) 20 2a 1 1 0 0 PBRPC:I 10 1
(6 Op Codes) () 42 1 0 1 0 DBRAA-1 Datatign 1 (8 Op Codes) 3 T 10 0 PBRPC1 10 1
(3bytes) 35 ' 0 0 0 DBRAA-1 10 ' (2 bytes) 4 1110 00D:D0-X AAL 1
(6and 8 cycles) (1) 6a 10 1 0 DBRAA-1 Data High 0 (6.7 and 8 cycles) E) 11 1 0 0D+DO+X+1 AAH 1
6 ' 0 1 0 DBRAA Data Low 0 6 11 1 0 DBRAA Datalow 110
2c Absolute (JUMP) a ' T 1 1 1 PBRPC Op Code ' (1 6a 1 1 1 0 DBRAA- Datathgn 10
(JMP)(4C) 2 110 1 PBRPCI NEW PCL 1 10a Direct X d,x 1 11 1 1 PBRPC Op Code 1
(1 0p Code) 3 T 1 0 1 PBAPC-2 NEWPCH 1 (BIT.STZSTY.LOY. 2 110 1 PBRPCH 00 1
(3bytes) ' 11 1 1 PBRNEWPC Op Code ' ORA.AND EOR ADC 2 2a 1 1 0 0 PBRPC 10 '
(3cycles) STA.LDA CMP.SBC) 3 11 0 0 PBRPCe1 10 1
s Do eeRe | (11 Op Codes) 4 T 1 1 0 00+DO-x Daatow 10
“ :::'(:’K::Ien(e.l)u.mp © 2 10 PS:PS‘ gg\l\?‘;dci 1 (2 bytes) (1) 4a 11 1 0 0D+DO+X+1 DataHigh 110
(JSR) 3 11 0 1 PBRPC-2 NEW PCH 1 (4.5 ana 6 cycles)
(1 0p Code) 4 11 0 0 PBRPC-2 10 1 10b Direct. X(R-M-W) d,x 1 11 1 1 PBRPC Op Code 1
(3 bytes) 5 11 1 0 os PCH 0 (ASL.ROL LSR ROR 2 11 0 1 PBRPC1 00 1
(6 cycles) 6 T 0 osa PCL 0 DEC.INC) 2 2a 1 1 0 0 PBRPC-1 10 1
(different order from NE502) ' 11 1 1 PBANEWPC NextOpCode 1 (6 Op Codes) 3 110 0 PBRPCe 10 1
. , (2 bytes) 4 10 1 0 0D:DO+X Data Low 1
" ?c?éiﬂf«éoggﬁ.lwc ; . (‘1 i 23:_:‘24 EKLCOGQ . (6.7.8 and 9 cycles) () 4 1 0 1 0 0D-DO'Xe1 DataHigh 1
STA LDA CMP.SBC) 3 110 1 PBRPC-2 AAH ' 3 s L O oo !
(8 0p Codes) 4 11 0 1 PBRPC-3 AAB y () 6 1 0 1 0 0D-DO+X+1 DataHigh 0
(4 bytes) 5 10 AABAA Datatow 10 o ' 0 v 0 00.DOX Datatow 0
(5and 6 cycles) () sa 110 AABAACT Data High 170 11 DirectY dy 1 v 1 1 PBRPC Op Code 1
*3b Absolute Long (JUMP) al 1 111 PBRP 1 (STX.LDX) 2 ' 1 0 1 PBRPC.1 bo !
IMP) 9 ome e 2 Voo psﬂ pg,, 325‘?’& N (2 0p Codes) 2 2a 1 1 0 0 PBRPCe1 0 1
(1 0p Code) 3 11 0 1 PBRPC-2 NEWPCH 1 (2 bytes) N ''1 0 0 PBRPCa 10 !
(4 bytes) N I 1 0 1 PBRPGe3 NEW BR | (4.5and 6 cycles) 4 11 10 0D:DOeY Datatow 110
(4 cycles) | L1 1 NEWPBRPC Op Code () 4 1 1 1 0 0D'DO+Y+1 DataHigh 10
) 12a Absolute X a,x 1 11t 1 PBRPC Op Code 1
(BITLOY.STZ 2 110 1 PBRPCe1 AAL 1
*3c Absolute Long (Jump to 1 111 1 PBARPC Op Code 1 ORA.AND.EOR ADC. N }v 0 1 PBRPC.2 AAH !
Subroutine Long) al 2 11 0 1 PBRPC-1 NEWPCL 1 STA.LDA.CMP.SBC) @ 3a 1 1 0 0 DBRAAHAAL:XLIO !
s 3 110 1 PBRPC-2 NEWPCH 1 (11 Op Codes) 4 't 1 0 DBRAAX Datatow 10
(1 Op Code) N Do 0 os PBR o (3 bytes) (h 4a 1 1 1 0 DBRAA:X:1 DataHgh 10
(4 bytes) 5 11 0 0 os 10 1 (4.5and 6 cycles)
(7 cycles) 6 11 0 1 PBRPC:3 NEWPBR 1 120 Absolute X(R-M-W) a,x 1 111 1 PBRPC Op Code 1
7 L 10 0S-1 PCH 0 (ASL.ROL.LSR.ROR 2 1.1 0 1 PBRPC+1 AAL 1
8 11 1 0 o0se2 PCL 0 DEC.INC) 3 110 1 PBRPC:2 AAH 1
1 11 1 1 NEWPBRPC NextOpCode 1 (6 Op Codes) 4 11 0 0 DBRAAHAAL:XL IO 1
4a Dwectd 1 111 1 PBRPC 0Op Code 1 (3 bytes) S 1 0 1 0 DBRAAX Datalow 1
(BITSTZSTY.LOY 2 11 0 1 PBRPCH 00 \ (7and 9 cycles) %2 1 0 1 0 DBRAAX-1 DataHigh 1
CPY.CPX STX.LDX 2 2a 1 1 0 0 PBRPC 10 1 @ 8 10 0 0 DBRAAX:1 10 !
ORA AND EOR.ADC 3 11 1 0 0D-DO Datalow 10 (D 7a 1 0 1 0 DBRAAX:1 DataHign 0
STA.LDA.CMP.SBC) M 3 1 1 1 0 00-DO-1 DataHigh 10 ’ ' 0 1 0 DBRAA:X Data Low o
(18 Op Codes) *13 Absolute Long X al,x 1 11 1 1 PBRPC Op Code 1
(2 bytes) (ORA.AND. EOR.ADC. 2 110 1 PBRPCe! AAL 1
(3.4.and 5 cycles) STA.LDA.CMP.SBC) 3 110 1 PBRPC2 AAH 1
4b Direct (R-M-W) d 1 11 11 PBARPC Op Code ' (8 Op Codes) N t 1 0 1 PBRPC.3 AAB !
(ASL.ROL LSR ROR 2 110 1 PBRPCe 00) (4 bytes) ° TolT 0 AABAAKX Datatow 10
DEC INC.TSB.TR8) 2 2a 1 1 0 0 PBRPC:! 10 ' (5.and 6 cycles) () 5a 1 1 1 0 AABAA'X:1 DataHigh 10
(6 Op Codes) 3 10 1 0 0000 Data Low ! 14 Absolute Y ay 1 11 1 1 PBRPC Op Code 1
(2 bytes) M 3% 1 0 1 0 00001 Datatigh 1 (LDX.ORA AND.EOR ADC, 2 110 1 PBRPCH AAL 1
(5.6.7 and 8 cycles) 3 a 10 0 0 0D:DO1 10 1 STA.LDA.CMP SBC) 3 110 1 PBRPC:2 AAH 1
) s%a 1 0 1 0 00+DO-1 DataHign 0 (9 Op Codes) (4 338 1 1 0 0 DBRAAHAAL'YLIO 1
s 10 1 0 0000 Data Low 0 (3 bytes) 4 111 0 DBRAAWY Datalow 10
5 Accumulator A h T 1 1 1 PBRPC Op Code \ (4.5and 6 cycles) (1) 4a 1 1 1 0 DBRAA-Yel Datatigh 1.0
(ASLINC ROL DEC LSRROR) 2 11 0 0 PBRPCH 10) 15 Relative r) T 1 PBRPC Op Code 1
(6 Op Codes) (BPL.BMI.BVC BVS BCC. 2 T 0 1 PBRPCH Offset 1
(1 byte) BCS.BNE.BEQ BRA) (5 2a 1 1 0 0 PBRPC: 10 1
(2 cycles) (9 Op Codes) 6 20 1 1 0 0 PBRPC:! 10 1
6a Implied | | ' 1 1 1 PBRPC Op Code | (2 bytes) f 11 1 1 PBRPC-Offset Op Code 1
(DEY. INY. INX. DEX. NOP, 2 11 0 0 PBRPC 10 ' (2.3and 4 cycles)
XCE. TYA TAY.TXA TXS *16 Relatve Long rl 1 1 1 1 PBRPC Op Code 1
TAX.TSX.TCS.TSC.TCD (BRL) 2 11 0 1 PBRPCH1 Offset Low 1
TOC.TXY.TYX.CLC SEC (1 0p Code) 3 11 0 1 PBRPC:2 Offset High 1
CLI.SELCLV.CLD.SED) (3 bytes) 4 11 0 0 PBRPC-2 10 1
(25 Op Codes) (4 cycles) 1 11 1 1 PBRPC:Offset Op Code 1
(1 byte) 17a Absolute Indirect (a) 1 11 1 1 PBRPC Op Code 1
(2 cycles) (IMP) 2 11 0 1 PBRPCe AAL 1
*6b Imphed | 1 111 1 PBRPC Op Code ' (10p Code) 3 11 0 1 PBRPC:2 AAH 1
(XBA) 2 11 0 0 PBRPCH1 10 i (3 bytes) 4 111 0 0AA NEWPCL 1
(1 Op Code) 3 11 0 0 PBRPC1 10 1 (5 cycles) 5 1110 0AAN NEWPCH 1
(1 byte) 1 11 1 1 PBANEWPC Op Code 1
(3 cycles) *17b. Absolute Indirect (a) 1 T 1 1 PBRPC Op Code 1
ROY 2 110 1 PBRPCH AAL 1
® 6c Wait For Interrupt (ML) 3 110 1 PBRPCr2 AAH 1
(WAI) 1 1 1 11 PBRPC Op Code ' (1 0p Code) 4 111 0 0AA NEW PCL I
(1 0p Code) 9 2 11 0 0 1 PBRPC:1 10 1 (3 bytes) 5 111 0 0AA+ NEW PCH 1
(1 byte) 3 T 1 0 0 0 PBRPC:1 1 (6 cycles) 6 111 0 0AA2 NEWPBR 1
(3 cycles) IRQNMI 1 111 1 1 PBRPC:1 IRQ(BAK) 1 1 T 1 1 1 NEWPBRPC Op Code 1
® 60 Stop-The-Cock ® 18 Direct Indirect (d) 1 11 1 1 PBRPC Op Code 1
(STP) 1 o1 o111 PBRPC Op Code 1 (ORA AND EOR.ADC 2 11 0 1 PBRPC1 [s]e} 1
(1 Op Code) 2 11 0 0 1 PBRPC:1 10 1 STA.LDA CMP.SBC) @2 2a 1 1 0 0 PBRPGC-1 0 1
(1 byte) RES 13 1 0 0 1 PBRPC:1 IO ! (8 Op Codes) 3 Tt 1 0 0D+DO AAL 1
(3 cycles) RES-0 1c 11 0 0 1 PBRPC:1 RES(BRK) 1 (2 bytes) 4 11 1 0 0D+DO+1 AAH 1
RES®0 16 1 1 0 0 1 PBRPC:1 RES(BRK) 1 (5.6 and 7 cycles) 5 11 1 0 DBRAA Datalow 10
RES 1 1a 1.1 0 0 1 PBRPC:1 RES(BRK) 1 (1 sa 11 1 0 DBRAA:1 Data Low 10
See 21a Stack 1 1.1 1 1 1 PBRPC+1 BEGIN 1

(Hardware interrupt)

230 Apple IIGS Hardware Reference

Table 6. Detailed Instruction Operation (continued)

ADDRESS MODE CYCLE VP, ML, VDA,VPA ADDRESS BUS DATA BUS ADDRESS MODE CYCLE VP, ML, VDA.VPA ADDRESS BUS DATA BUS R/W
*19 Direct Indirect Long [d] 1 1 1 1 PBRPC Op Code *23 Stack Relative Indirect 1 1 1 1 PBRPC Op Code 1
(ORAAND EOR ADC 2 11 0 1 PBRPCe1 00 Indexed (d,8),y 2 11 0 1 PBRPCH SO 1
STA.LDA.CMP.SBC) 2) 2a 11 0 0 PBRPCe1 10 (ORA AND EOR ADC 3 11 0 0 PBR-PC-! 10 1
(8 0p Codes) 3 11 1 0 0D-00 AAL STA.LDA CMP SDC) 4 11 1 0 0S50 AAL 1
(2 bytes) 4 11 1 0 0D:00+1 AAH (8 Op Codes) B 11 1 0 08-S0+t AAH 1
(6.7 and 8 cycles) 5 11 1 0 0D-DO-2 AAB 1 (2 bytes) 6 ' 10 0 05°50°1 10 1
6 11 10 AABAA Datalow 10 (7and 8 Cycles) 7 11 1 0 DBRAA.Y Datatow 10
(1) 6a 11 1 0 AABAAN DataMigh 1.0 M 7a 11 1 0 DBRAA'Y:1 DataHgn 10
20a Absolute Indexed Indirect (s,x) 1 1 1 1 PBRPC Op Code 1 *24a Block Move Positive 1 1 1 1 PBRPC Op Codge 1
(JMP) 2 v 1 0) PBRPC+! AAL 1 (forward) xyc 2 v 1 0 1 PBRPC+! DBA 1
(1 Op Code) 3 110 1 PBRPC-2 AAM 1 (MVP) 3 11 0 1 PBRPC-2 SBA 1
(3 bytes) 4 11 0 0 PBRPC2 10 1 (1 Op Code) N2 |4 1 10 SBAX Source Data 1
(6 cycles) 5 110 1 PBRAA'X NEW PCL 1 (3 bytes) Byte | 5 11 1 0 DBAY Dest Data 0
6 100 1 PBRAAX:1 NEWPCH 1 (7 cycles) cz|s 11 0 0 DBAY 10 1
1 11 1 1 PBRNEWPC OpCode 1 x Source Address 7 11 0 0 DBAY 10 1
#*200 Absolute Indexed Indirect l ' 1 1 1 PBRPC Op Code 1 y Destinaton ! Toro1 1 PBRPC Op Code !
(Jump to Subroutine Indexed 2 11 0 1 PBRPCH AAL ' ¢ Number of Bytes to Move -1 | 2 o1 0 1 PBRPC-1 0BA !
Indirect) (a.x) 3 Y1 o1 0 08 PCH o xy Decrement 3 110 1 PBRPC:2 SBA 1
(JSR) Y V1 1 0 osa PoL 0 MVP 15 used when the N1 T 1 0 SBAX! Source Data 1
1 Op Code) 5 11 0 1 PBRPC:2 AAH 1 destnation startaddress ~ Byte | 5 Tt o1 0 DBAY-! DOest Data 0
(3 bytes) 6 1 1 0 0 PBRPC-2 10 1 isnigher (more positive) € 1 [6 to1r 0 0 DBAY: 10 !
(8 cycles) 7 110 1 PBRAA'X NEW PCL 1 than the source start address |7 11 0 0 DBAY 10 '
8 110 1 PBRAAX:1 NEWPCH 1 M 11 1 1 PBRPC Op Code 1
1 11 1 1 PBRNEWPC NextOpCode 1 FFFFFF 2 11 0 1 PBRPCH DBA 1
212 Stack (Haraware 1 T 1 1 PBRPC 10 ' Dest Start NByte | 3 'y 0 1 PBRPC-2 S8A !
Interrupts) s @ 2 11 0 0 PBRPC 10 ' Last | 4 't 1 0 SBAX-2 Source Data 1
(IRQ NMI ABORT RES) o3 Vo 0 os PBR ° Source Start cols 11 1 0 DBAY2 Dest Data 0
(4 hardware interrupts) a 11 1 0 0Sa1 PCH 0 | Dest End ° ' v 0 0 DBAY-2 0 !
(0 bytes) 5 11 1 0 o0s2 poL o “— Source End 7 11 0 0 DBAY2 10 1
(7 and 8 cycles) 6 11 1 0 0s3 P 0 000000 L1 111 1 PBRPC3 Next Op Code 1
7 0 1 1 0 OvA AAVL '
8 0 1 1 0 OvAn AAVH 1 #24b Block Move Negative) 1 1 1 PBRPC Op Code 1
! v o1 1 0AAv NextOp Code 1 (backward) xyc 2 11 0 1 PBRPC-1 DBA 1
216 Stack (Software ' V111 PBRPC Op Code 1 (MVN) N2 |3 110 1 PBRPCe2 SBA 1
Interrupts) s 3 2 11 0 1 PBRPCH Signature 1 (1 Op Code) Byte | 4 T 1 0 SBAX Source Data 1
(BRK.COP) 73 111 0 0S PBR 0 (3 bytes) ca|s 11 1 0 DBAY Dest Data 0
(2 Op Coaes) (10) 4 11 0 0S4 PCH o (7 cycles) 6 11 0 0 DBAY 10 1
(2 bytes) (10) s 11 1 0 0s2 PCL 0 x Source Address 7 11 0 0 DBAY 10 1
(7 and 8 cycles) (10) 6 Tt 1 0 0S3 (COPLatches) P 0 y Destination -
7 0 1 1 0 OVA AAVL) c Number of Bytes to Move 1 | ! P11 1 PBRPC Op Code !
8 0 ' 1 0 ovan AAVH ' xy Increment 2 T 0 1 PBRPCH bBA !
' T oAAv Next Op Code 1 FFEFFF N3 i oea !
21c Stack (Return from ' ' 11 1 PBRPC opC ' Source End Byte 1 4 Lol o seAx Source Data |
- p Code cils 1 1 0 DBAY Dest Data 0
Interrupt) s 2 11 0 0 PBRPC-! 10 1 6 11 0 0 DBAY! 0 .
(RTH 3) 3 11 0 0 PBRPC: 10 1 Dest End 7 7 1 0 0 DBAY.1 10 Il
(1 Op Code) 4 o 10 0S1 P 1 Source Start .
[oyte N ' 1 1 0 ose2 PEL N Dest Start 1 11 11 PBRPC Op Code 1
(6.ana 7 cycles) 6 T 1 1 0 0543 PCH ' 2 T Q 1 PBRPCA) OBA !
(different order trom N6S02) (7) 7 11 0 05w PBR 1 000000 NByte |3 '} 1} 0 1 PBRFC-2 SBA !
) Vo1 1 1 pBRPC New Op Code 1 cola T 1 0 SBAX-2 Source Data 1
. MVN is used when the 5 11 1 0 DBAY-2 Dest Data 0
219 Stack (Return trom ! tov 11 PBRPC Op Code ! destination start adaress, 6 11 0 0 DBAY-2 10 1
Subroutine) s 2 t1 0 0 PBRPC 10 ! is lower (more negative) 7 11 0 0 DBAY:2 10 1
(RTS) 3 11 0 0 PBRPCH 10 1 than the source start L1 11 1 1 PBRPC-3 NextOp Code 1
(1 0p Code) 4 1o 10 0S8+ PCL 1 address
(1 byte) 5 11 0 08e2 PCH 1
(6 cycles) 6 1 0 0 052 10 1
1 11 1 1 PBRPC 0Op Code 1 Notes.
#*21e Stack (Return trom 1 1 1 1 PBRPC Op Code 1 (1) Add 1 byte (for immediate only) for M Qor X 0 (1e 16 bit data). add ! cycle for M O or X O
Subroutine Long) s 2 1.1 0 0 PBRPC-t 10 ! (2) Add 1 cycle for direct register low (DL) not equal 0
(RTL) 3 Lo R ec 1 ! (3) Special case for aborting instruction This s the last cycle which may be aborted or the Status.
(1 0p Coge) N V1o 0 08 NEwpCL PBR or DBR registers will be updaled
(1 byte) 5 11 1 0 082 NEW PCH '
(6 cycles) 6 11 1 0 0843 NEW PBR \ (4) Add 1 cycle for indexing across page boundaries, or write, or X 0 When X 1 0r in the
N 11 1 1 NEWPBAPC NextOpCode 1 emulation mode., this cycle contains invalid addresses
21t Stack (Push) s 1 T 1 PBRPC Op Coge ' {5) Add 1 cycle f branch 1s taken
(PHP PHA PHY PHX 2 1 1 0 0 PBRPC-1 10 1 (6) Add 1 cycle f branch s taken across page boundaries in 6502 emulation mode (E 1)
PHO.PHK PHB) M Ja Ty 008 Register High 1 (7) Subtract 1 cycle for 6502 emulation mode (E 1)
:: boyp‘.(;odu) 3 L 1 0 0S Register Low 1 (8) Ada 1 Cycle for AEP SEP
(3and 4 cycles) (9) Wait at cycie 2 for 2 cycles atter NMI or TRQ active input
21g Stack (Pull) s 1 111 1 PBRPC Op Code ' (10) R/W remains high during Reset
(PLPPLAPLY.PLX PLD PLB) 2 11 0 0 PBRPCe1 10 1 Abbreviations
(Ditterent than N6502) 3 11 0 0 PBRPC-! 10 1
(6 Op Codes) 4 1 0 0Sn Register Low 1 AAB Absolute Address Bank
(1 byte) () 4a 11 0 082 Register High 1 AAH Absolute Address High
(6.and 5 cycles) AAL Absolute Address Low
*21n St (Pusn Etecive Loobrou vemac o opcose AL Abson Aares vector e
ndirec! ress) s N
(PEI) @ 2a 11 0 0 PBRPCe1 10 1 g gf,ce::";':g'f:'m
(1 Op Code) 3 vt 1 0 0000 AAL ! 0BA Destination Bank Address
(2 bytes) 4 Y11 0 0D-DOt AAH 1 DBR Data Banx Register
(6.ana 7 cycles) B 11 0 0s AAH 0 00 Direct Offset
6 Ty 0 0S8 AAL o IDH Immediate Data Hign
*211 Stack (Push Eftective 1 LR 1 1 PBRPC Op Code 1 IDL Immediate Data Low
Absolute Address) s 2 110 1 PBRPCH AAL 1 10 Internal Operation
(PEA) 3 110 1 PBRPC:2 AAH 1 P Status Register
(1 0p Codge) 4 111 0 0s AAH [PBR Program Bank Register
(3 bytes) 5 1 10 0s AAL 0 PC Program Counter
(5 cycles) R-M-W Read-Modity-Write
*21) Stack (Push Effective 1 11 11 PBRPC Op Code 1 S Stack Address
Program Counter Relative 2 110 1 PBRPC:1 Offset Low 1 SBA Source Bank Address
Address) s 3 11 0 1 PBRPC:2 Oftset High 1 SO Stack Offset
(PER) 4 11 0 0 PBRPC:2 10 ' VA Vector Address
(1 Op Code) s 11 1 0 0s PCH:OFF: 0 xy Index Registers
(3 bytes) CARRY * New W65C816/802 Aadressing Modes
(6 cycles) 6 111 0 0Sa PCL-OFFSET 0 ® New W65C0Z Addressing Modes.
*22 Stack Relative d,s ' V1 1 1 PBRAC Op Code 1 Blank NMOS 6502 Adaressing Modes
(ORA AND.EOR ADL 2 110 1 PBRPCet SO l
STA LDA.CMP.SDC) 3 11 0 0 PBRPCe1 10 1
(8 Op Codes) 4 T 1 0 0550 Datalow 10
(2 bytes)) 4a 11 1 0 05501 DataHigh 1.0

(4and 5 cycles)

Chapter 10 The 65C816 Microprocessor 231

232

Recommended W65C816 and W65C802 Assembler
Syntax Standards

Directives

Assembler directives are those parts of the assembly language source
program which give directions to the assembler; this includes the defini-
tion of data area and constants within a program. This standard excludes
any definitions of assembler directives.

Comments

An assembler should provide a way to use any line of the source program
as acomment. The recommended way of doing thisisto treatany blank
line, or any line that starts with a semi-colon or an asterisk as acomment.
Other special characters may be used as well

The Source Line

Any line which causes the generation of a single W65C816 or W65C802
machine language instruction should be divided into four fields: a label
field, the operation code, the operand, and the comment field

The Label Field—The label field begins in column one of the line. A label
must start with an alphabetic character, and may be followed by zero or
more alphanumeric characters. An assembler may define an upper limit
onthe number of characters thatcan be in alabel, solong as that upper
limit is greater than or equal to six characters. An assembler may limit
the alphabetic characters to upper-case characters if desired. If lower-
case characters are allowed, they should be treated as identical to their
upper-case equivalents. Other characters may be allowed in the label, so
long as their use does not conflict with the coding of operand fields.

The Operation Code Field—The operation code shall consist of a three
character sequence (mnemonic) from Table 3. It shall start no sooner
than column 2 of the line, or one space after the label if a label is coded

Many of the operation codes in Table 3 have duplicate mnemonics, when
two or more machine language instructions have the same mnemonic,
the assembler resolves the difference based on the operand

If an assembler allows lower-case letters in labels, it must also allow
lower-case letters in the mnemonic. When lower-case letters are used in
the mnemonic, they shall be treated as equivalent to the upper-case
counterpart. Thus, the mnemonics LDA, Ida, and LdA must all be recog-
nized, and are equivalent

In addition to the mnemonics shown in Table 3, an assembler may pro-
vide the alternate mnemonics shown in Table 6

Table 7. Alternate Mnemonics

Standard Alias
BCC BLT
BCS BGE
CMP A CMA
DEC A DEA
INC A INA
JSL JSR
JML JMP
TCD TAD
TCS TAS
TDC TDA
TSC TSA
XBA SWA

JSL should be recognized as equivalent to JSR when itis specified with a
long absolute address. JML is equivalent to JMP with long addressing
forced

The Operand Field—The operand field may start no sooner than one
space after the operation code field. The assembler must be capable of
at least twenty-four bit address calculations. The assembler should be
capable of specifying addresses as labels, integer constants, and hexa-
decimal constants. The assembler must allow addition and subtraction
inthe operand field. Labels shall be recognized by the fact that they start
alphabetic characters. Decimal numbers shall be recognized as contain-
ing only the decimal digits 0. .. 9. Hexadecimal constants shall be recog-
nized by prefixing the constant with a "$"” character, followed by zero or
more of either the decimal digits or the hexadecimal digits “"A” .. “F" If
lower-case letters are allowed in the label field, then they shall also be
allowed as hexadecimal digits.

Apple 1IGS Hardware Reference

All constants, no matter what their format, shall provide at least enough
precision to specify all values that can be represented by a twenty-four
bitsigned or unsigned integer represented in two's complement notation.

Table 8 shows the operand formats which shall be recognized by the
assembler. The symbol d is a label or value which the assembler can
recognize as being less than $100. The symbol ais a label or value which
the assembler can recognize as greater the $FF but Iéss than $10000; the
symbol al is a label or value that the assembler can recognize as being
greater than $FFFF. The symbol EXT is a label which cannot be located
by the assembler at the time the instruction is assembled. Unless in-
structed otherwise, an assembler shall assume that EXT labels are two
bytes long. The symbols r and rl are 8 and 16 bit signed displacements
calculated by the assembler.

Note that the operand does not determine whether or not immediate
addressing loads one or two bytes; this is determined by the setting of
the status register. This forces the requirement for a directive or directives
that tell the assembler to generate one or two bytes of space for imme-
diate loads. The directives provided shall allow separate settings for the
accumulator and index registers.

The assembler shall use the <Z, > and A characters after the # character
inimmediate address to specify which byte or bytes will be selected from
the value of the operand. Any calculations in the operand must be per-
formed before the byte selection takes place. Table 7 defines the action
taken by each operand by showing the effect of the operator on an ad-
dress. The column that shows a two byte immediate value show the bytes
inthe order in which they appear in memory. The coding of the operand
1s for an assembler which uses 32 bit address calculations, showing the
way that the address should be reduced to a 24 bit value.

Table 8. Byte Selection Operator

Operand One Byte Result Two Byte Result
#$01020304 04 04 03
#2$01020304 04 04 03
#-$01020304 03 03 02
#7$01020304 02 02 01

In any location in an operand where an address, or expression resulting in
an address, can be coded, the assembler shall recognize the prefix char-
acters_,|,and >, which force one byte (direct page), two byte (absolute)
orthree byte (long absolute) addressing. In cases where the addressing
mode is not forced, the assembler shall assume that the address is two
bytes unless the assembler is able to determine the type of addressing re-
quired by context, in which case that addressing mode will be used. Ad-
dresses shall be truncated without error if an addressing mode is forced
which does not require the entire value of the address. For example,

LDA $0203 LDA [$010203

are completely equivalent. If the addressing mode is not forced, and the
type of addressing cannot be determined from context, the assembler
shall assume that a two byte address is to be used. If an instruction does
not have a short addressing mode (as in LDA, which has no direct page
indexed by Y) and a short address is used in the operand, the assembler
shall automatically extend the address by padding the most significant
bytes with zeroes in order to extend the address to the length needed. As
with immediate addressing, any expression evaluation shall take place
before the address is selected; thus, the address selection character is
only used once, before the address of expression.

The! (exclamation point) character should be supported as an alternative
to the | (vertical bar).

Alongindirectaddress is indicated in the operand field of an instruction
by surrounding the direct page address where the indirect address is
found by square brackets; direct page addresses which contain sixteen-
bit addresses are indicated by being surrounded by parentheses.

The operands of a block move instruction are specified as source bank,
destination bank—the opposite order of the object bytes generated.

Comment Field—The comment field may start no sooner than one space
after the operation code field or operand field depending on instruction
type.

Addressing Mode
Immediate

Absolute

Absolute Long

Direct Page

Accumulator

Implied Addressing

Direct Indirect
Indexed

Direct Indirect
Indexed Long

Direct Indexed

Indirect

Direct Indexed by X

Direct Indexed by Y

Absolute Indexed by X

Format

#d

#a

#al
HEXT
#.d
#.a
#_al

EXT
#d

-a

-al

EXT
#nd
#Aha
#Aal
HAEXT
'd

la

a

‘al
'EXT
EXT

-d

-a

al
al

EXT
d

-d

.a
-.al
L EXT
A
(no operand)
(d).y
(-d)y
(-a)y
(-al)y
(-EXT).y
(d].y
[-dly
[-aly
[-ally
[-EXT]y
(d.x)
(“d.x)
(~a.x)
(.alx)
(~EXT.x)
d.x
~d.x
c.ax
~.alx
EXT.x
dy
dy
—ay
~aly
~EXTy
d.x
'd.x
a.x
la,x
lal,x
IEXT,x
EXT.x

Table 9. Address Mode Formats

Addressing Mode
Absolute Indexed by Y

Absolute Long Indexed

by X

Program Counter
Relative and
Program Counter
Relative Long

Absolute Indirect

Direct Indirect

Direct Indirect Long

Absolute Indexed

Stack Addressing

Stack Relative
Indirect Indexed

Block Move

Note: The alternate ! (exclamation point) is used in place of the| (vertical bar)

Format

'dy
dy
ay
‘ay
tally
IEXTy
EXTy
-d.x
‘a,x
al.x
al,x
EXT.x
d (the assembler calculates
a randrl)

(no operand)
(d.s)y
(-ds)y
(as)y
(-als)y
(EXT.s)y
d.d

da

d.al
d.EXT
ad

aa

a.al
a.EXT
ald

ala

al.al
al.EXT
EXT.d
EXT.a
EXT.al
EXT.EXT

Chapter 10 The 65C816 Microprocessor 233

Table 10. Addressing Mode S y

Memory Utilization
Instruction Times In Number of Program
in Memory Cycles Seq Bytes
Original New Original New
Address Mode 8 Bit NMOS W65C816 8 Bit NMOS W65C816
6502 6502
1. Immediate 2 213 2 2(3)
2. Absolute 4(5) 4(35) 3 3
3. Absolute Long — 5(3) — 4
4. Direct 3(5) 3(34.5) 2 2
5. Accumulator 2 2 1 1
6. Implied 2 2 1 1
7. Direct Indirect Indexed (d).y 5(1) 5(1.3.4) 2 2
8. Direct Indirect Indexed Long [d]. y — 6(34) 2
9. Direct Indexed Indirect (d.x) 6 634 2 2
10. Direct, X 4(5 4(345) 2 2
11. Direct, Y 4 4(34) 2 2
12. Absolute, X 4(1.5) 4(135) 3 3
13. Absolute Long, X - 50) — 4
14. Absolute, Y 4 4013) 3 3
15. Relative 202 2 2 2
16. Relative Long — 3@ - 3
17. Absolute Indirect (Jump) 5 5 3 3
18. Direct Indirect - 5(3.4) — 2
19. Direct Indirect Long — 6(3.4) — 2
20. Absolute Indexed Indirect (Jump) — 6 — 3
21. Stack 3-7 3-8 1-3 1-4
22. Stack Relative - 43) — 2
23. Stack Relative Indirect Indexed — 7(3) — 2
24. Block Move X, Y, C (Source, Destination, Block Length) — 7 — 3
NOTES:
1. Page boundary, add 1 cycle if page boundary is crossed when forming address.
2. Branch taken, add 1 cycle if branch is taken.
3. M=0or X =0, 16 bit operation, add 1 cycle, add 1 byte forimmediate.
4. Direct register low (DL) not equal zero, add 1 cycle.
5. Read-Modify-Write, add 2 cycles for M = 1, add 3 cycles for M = 0.

23 Apple IIGS Hardware Reference

Caveats and Application Information

Stack Addressing

When in the Native mode, the Stack may use memory locations 000000
to OOFFFFF. The effective address of Stack, Stack Relative, and Stack
Relative Indirect Indexed addressing modes will always be within this
range. In the Emulation mode, the Stack address range is 000100 to
0001FF. The following opcodes and addressing modes will increment or
decrement beyond this range when accessing two or three bytes:

JSL; JSR(a,x); PEA; PEI; PER; PHD; PLD; RTL; d.s; (d.s).y

Direct Addressing

The Direct Addressing modes are often used to access memory registers
and pointers. The effective address generated by Direct; Direct,X and
DirectY addressing modes will always be in the Native mode range
000000 to 00FFFF. When in the Emulation mode, the direct addressing
range is 000000 to 0000FF, except for Direct] and [Direct],Y addressing
modes and the PEI instruction which will increment from 0000FE or
000OFF into the Stack area

When in the Emulation mode and DH is not equal to zero, the direct
addressing range is 00DHOO0 to 00DHFF, except for [Direct] and [Direct].Y
addressing modes and the PEI instruction which will increment from
OODHFE or 00DHFF into the next higher page.

When irn the Emulation mode and DL in not equal to zero, the direct
addressing range is 000000 to 00FFFF

Absolute Indexed Addressing (W65C816 Only)

The Absolute Indexed addressing modes are used to address data out-
side the direct addressing range. The W65C02 and W65C802 addressing
range is 0000 to FFFF. Indexing from page FFXX may result in a 00YY
data fetch when using the W65C02 or W65C802. In contrast, indexing
from page ZZFFXX may resultin ZZ+1,00YY when using the W65C816

Future Microprocessors (i.e., W65C832)
Future WDC microprocessors will support all current W65C816 operat-
ing modes for both index and offset address generation

ABORT Input (W65C816 Only)

ABORT should be held low for a period not to exceed one cycle. Also, if

ABORT is held low during the Abort Interrupt sequence, the Abort Inter-

rupt will be aborted. It is not recommended to abort the Abort Interrupt

The ABORT internal latch is cleared during the second cycle of the Abort

Interrupt. Asserting the ABORT input after the following instruction

cycles will cause registers to be modified

* Read-Modify-Write: Processor status modified if ABORT is asserted
after a modify cycle

® RTI: Processor status will be modified if ABORT s asserted after
cycle3. —

* IRQ,NMI, ABORT BRK, COP: When ABORT is asserted after cycle?2,
PBR and DBR will become 00 (Emulation mode) or PBR will become
00 (Native mode)

The Abort Interrupt has been designed for virtual memory systems. For
this reason, asynchronous ABORT's may cause undesirable results due
to the above conditions

VDA and VPA Valid Memory Address Output Signals (W65C816
Only)

When VDA or VPA are high and during all write cycles, the Address Bus
isalways valid. VDA and VPA should be used to qualify all memory cycles
Note that when VDA and VPA are both low, invalid addresses may be
generated. The Page and Bank addresses could also be invalid. This will
be due to low byte addition only. The cycle when only low byte addition
occursisan optional cycle for instructions which read memory when the
Index Register consists of 8 bits. This optional cycle becomes a standard
cycle for the Store instruction, all instructions using the 16-bit Index
Register mode, and the Read-Modify-Write instruction when using 8- or
16-bit Index Register modes

Apple Il lle, lic and I+ Disk Systems (W65C816 Only)

VDA and VPA should not be used to qualify addresses during disk opera-
tionon Apple systems. Consult your Apple representative for hardware/
software configurations

DB/BA Operation when RDY is Pulled Low (W65C816 Only)
When RDY is low, the Data Bus is held in the data transfer state (i.e., ¢2
high). The Bank address external transparent latch should be latched
when the ¢2 clock or RDY is low

M/X Output (W65C816 Only)

The M/X output reflects the value of the M and X bits of the processor
Status Register. The REP, SEP and PLP instructions may change the
state of the M and X bits. Note that the M/X output is invalid during the
instruction cycle following REP, SEP and PLP instruction execution.
This cycle is used as the opcode fetch cycle of the next instruction.

All Opcodes Function in All Modes of Operation
It should be noted that all opcodes function in all modes of operation.
However, some instructions and addressing modes are intended for
W65C816 24-bitaddressing and are therefore less useful for the W65C802.
The following is a list of instructions and addressing modes which are
primarily intended for W65C816 use

JSL: RTL, (d]. [d].y: JMP al; JML: al; al,x

The following instructions may be used with the W65C802 even though
a Bank Address is not multiplexed on the Data Bus:
PHK; PHB; PLB
The following instructions have “limited" use in the Emulation mode
® The REP and SEP instructions cannot modify the M and X bits when in
the Emulation mode. In this mode the M and X bits will always be high
(logic 1)

When in the Emulation mode. the MVP and MVN instructions use the
X and Y Index Registers for the memory address. Also, the MVP and
MVN instructions can only move data within the memory range 0000
(Source Bank) to 00FF (Destination Bank) for the W65C816, and 0000
to O0FF for the W65C802

Indirect Jumps

The JMP (a) and JML (a) instructions use the direct Bank for indirect
addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for in-
direct address tables

Switching Modes

When switching from the Native mode to the Emulation mode, the X and
M bits of the Status Register are set high (logic 1), the high byte of the
Stack is set to 01, and the high bytes of the X and Y Index Registers are
set to 00. To save previous values, these bytes must always be stored
before changing modes. Note thatthe low byte of the S, X and Y Registers
and the low and high byte of the Accumulator (A and B) are not affected
by a mode change.

How Hardware Interrupts, BRK, and COP Instructions Affect
the Program Bank and the Data Bank Registers .

When inthe Native mode, the Program Bank register (PBR) is cleared to
00 when a hardware interrupt, BRK or COP is executed. In the Native
mode, previous PBR contents is automatically saved on Stack

Inthe Emulation mode, the PBR and DBR registers are cleared to 00 when
ahardware interrupt, BRK or COP is executed. In this case, previous con-
tents of the PBR are not automatically saved.

Note thata Return from Interrupt (RTI) should always be executed from
the same "mode"” which originally generated the interrupt.

Binary Mode
The Binary mode is set whenever a hardware or software interrupt is
executed. The D flag within the Status Register is cleared to zero.

WAI Instruction

The WAL instruction pulls RDY low and places the processor in the WAI
“low power” mode. NMI, IRQ or RESET will terminate the WAI condition
and transfer control to the interrupt handler routine. Note thatan ABORT
input will abort the WAI instruction, but will not restart the processor.
When the Status Register | flag is set (IRQ disabled), the IRQ interrupt
will cause the next instruction (following the WAI instruction) to be
executed without going to the TRQ interrupt handler. This method re-
sults in the highest speed response to an TRQ input. When an interrupt

Chapter 10 The 65C816 Microprocessor 235

isreceived afteran ABORT which occurs during the WAl instruction, the
processor will return to the WAI instruction. Other than RES ES (highest
priority), ABORT is the next highest priority, followed by NMI or IRQ
interrupts.

STP Instruction

The STP instruction disables the 2 clock to all circuitry. When disabled,
the @2 clock is held in the high state. In this case, the Data Bus will remain
in the data transfer state and the Bank address will not be multiplexed
onto the Data Bus. Upon executing the STP instruction, the RES signal is
the only input which can restart the processor. The processor is restarted
by enabling the ¢2 clock, which occurs on the falling edge of the RES
input. Note that the external oscillator must be stable and operating prop-
erly before RES goes high.

COP Signatures

Signatures 00-7F may be user defined, while signatures 80-FF are re-
served forinstructions on future microprocessors (i.e., W65C832). Con-
tact WDC for software emulation of future microprocessor hardware
functions.

WDM Opcode Use

The WDM opcode will be used on future microprocessors. For example,
the new W65C832 uses this opcode to provide 32-bit floating-point and
other 32-bit math and data operations. Note that the W65C832 will be a
plug-to-plug replacement for the W65C816, and can be used where high-
speed, 32-bit math processing is required. The W65C832 will be available
in the near future.

RDY Pulled During Write

The NMOS 6502 does not stop during a write operation. In contrast, both
the W65C02 and the W65C816 do stop during write operations. The
W65C802 stops during a write when in the Native mode, but does not
stop when in the Emulation mode.

MVN and MVP Affects on the Data Bank Register
The MVN and MVP instructions change the Data Bank Register to the
value of the second byte of the instruction (destination bank address).

Interrupt Priorities
The following interrupt priorities will be in effect should more than one
interrupt occur at the same time:

Highest Priority

> |0
O(D

_E__
B

’Slfl

Lowest Priority

Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers
Alitransfers from one register to another will result in a full 16-bit output
from the source register. The destination register size will determine the
number of bits actually stored in the destination register and the values
stored in the processor Status Register. The following are always 16-bit
transfers, regardless of the accumulator size:

TCS; TSC; TCD; TDC

Stack Transfers

When in the Emulation mode, a 01 is forced into SH. In this case, the B
Accumulator will not be loaded into SH during a TCS instruction. When
in the Native mode, the B Accumulator is transferred to SH. Note that in
both the Emulation and Native modes, the full 16 bits of the Stack Regis-
ter are transferred to the A, B and C Accumulators, regardless of the
state of the M bit in the Status Register

WDC Toolbox System-Emulator

Features
Real-Time emulation of the W65C802/816 and the W65C02

Uses an inexpensive Apple Ile Computer as host (software provided)
18K bytes of Emulation RAM, mappable in 2K blocks

Optional RAM expansion to 256K

Optional hardware Real-Time Trace Board

Optional 802/816 Emulation Pod Unit

Single-Step

48 bit trace memory of up to 2048 machine cycles

Three 40-bit breakpoint control registers providing:
—Break on Address

—Break on Data

—RBreak on Control

—Break on User Status

—Break on Nth Occurance

—Coast Mode

Microsecond execution timer
Also available in In-Circuit-Evaluation chip or system test configuration

Product Overview

The Toolbox System-Emulator consists of a Main Unit and Interface Card
that plugs into one of the Apple Computer's expansion slots. The Main
Unit provides all necessary logic for breakpointing, single-stepping and
mapping. In this configuration the user may perform basic debug opera-
tions or use the Toolbox in the Evaluation Mode.

With the optional Real-Time Trace Board, the user now has 40 bits of
trace memory within a window of 2048 machine cycles. A optional
Emulation RAM Expansion Board is also available which increases the
user's emulation RAM by 64K bytes or 256K bytes, with memory configur-
ation under software control.

The Toolbox may be used with or without the optional Pod Unit. With the
Pod Unit, the user can plug into the prototype microprocessor socket for
hardware debug. Since the Main Unit remains the same regardless of
the microprocessor used, the user does not have to learn a new set of
Toolbox commands for each type of processor.

Apple Ile is a trademark of Apple Computer, Inc.

236 Apple 1IGs Hardware Reference

Packaging Information

Ceramic Package

A -

Plastic & Cerdip Package

t

£

+—
1t
o

4

8 23

l 19 22|
l 20 21

1 40 _T
S

2 39
3 38
4 37
17 2
1

SEATING
PLANE

\SEAYING

PLANE

r& D2
BOTH
SIDES z
- el
OOonoonm
AR
PIf}NOJ

N = NO. LEADS

NOTES:

1. Power supply pins not available on the 40-pin version. These
power supply pins have been added for improved high
performance.

2. New pins, not available on 40-pin version.

|

} ?

U-RADIUS

E2
BOTH
SIDES

Chapter 10 The 65C816 Microprocessor

40-PIN PACKAGE
SYM INCHES MILLIMETERS
BOL | MmN MAX MIN MAX
A 0225 572
o 0014 0023 036 058
b1 0030 0070 076 178
c 0008 0015 020 038
o - 2096 - 5324
3 0510 0620 1295 1575
Er 0520 0630 1321 16 00
e 0100 8SC 254 BSC
L 0125 0200 318 508
v | oise - 381
Q 0020 | 0060 os1 | 1s2
s e 0098 249
s 0005 - 013
s2 0005 - 013
" 0 15° 0 15°
44-LEAD CARRIER -
sym- | INCHES (MILLIMETERS
sot | MmN [max [omin T max
A 0185 0180 420 | 457
L Al 009 | 0120 229 304
[c ost | -
O 1740 | 1765
D1 N vssjpjj$2
02 0 50¢ _1270BSC
€ | oess | oess | 1740, | 1765
13 0650 | 0656 | 16510 | 16662
€2 | 0s%0 0630 | 1499 | 1600
L_e 0050TYP | 127TYP
_ S 0020 | -] 051
J1 | 0042 | ooss 1067 1219
M | 002 0661 | 0812
N 3 o
P | oo 0331 | 0533
2 | 0042 | 00% | 107 | 142

237

Ordering Information

W 65C816 PL I -2

-
Description

WC—Custom

W—Standard

Product Identification Number

Package

P—Plastic E—Leadless Chip Carrier
C—Ceramic X—Dice

D—Cerdip PL— Plastic Chip Carrier
Temperature/Processing

Blank—0°C to 70°C

|—-40°C to +85°C

M—-55°C to +125°C

Performance Designator

Designators selected for speed and power
specifications.

Blank—2 MHz

-4 4MHz

-6 6 MHz

-8 8MHz

Sales Offices:

Technical or sales assistance may be requested from:
The Western Design Center, Inc.

2166 East Brown Road

Mesa, Arizona 85203

602/962-4545

TLX 6835057

WARNING: Represented in your area by:
MOS CIRCUITS ARE SUBJECT TO DAMAGE FROM STATIC DISCHARGE

Internal static discharge circuits are provided to minimize part damage due to environmental
static electrical charge build ups Industry established recommendations for handling MOS
circuits include

Ship and store product in conductive shipping tubes or in conductive foam plastic Never
ship or store product in non-conductive plastic containers or non conductive plastic foam
material

2 Handle MOS parts only at conductive work stations

3 Ground all assembly and repair tools

WDC reserves the right to make changes at any time and without notice.

Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no
guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitabil-
ity of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be
construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms
and Conditions of Sale and Sales Policies, copies of which are available upon request.

©The Western Design Center, Inc. 1985 FAX6028356442
The Western Design Center, Inc. 2166 E. Brown Rd./Mesa, AZ 85203 602/962-4545/TLX 6835057
Revised August 1986 Published in U.S.A. November 1986

238 Apple IIGS Hardware Reference

Appendix A Roadmap to the Apple IIGS
Technical Manuals

The Apple IIGS personal computer has many advanced features, making
it more complex than earlier models of the Apple II. To describe it fully,
Apple has produced a suite of technical manuals. Depending on the way
you intend to use the Apple IIGS, you may need to refer to a select few of
the manuals, or you may need to refer to most of them.

239

The technical manuals are listed in Table A-1. Figure A-1 is a diagram showing the
relationships among the different manuals.

= Table A-1 Apple IIGS technical manuals

Title Subject

Technical Introduction to the Apple 1IGS What the Apple IIGS is

Apple 1IGS Hardware Reference Machine internals—hardware

Apple 1IGS Firmware Reference Machine internals—firmware

Programmer’s Introduction Concepts and a sample program

to the Apple I1IGS

Apple 11GS Toolbox Reference, How the tools work, and some toolbox

Volume 1 specifications

Apple 11GS Toolbox Reference, More toolbox specifications

Volume 2

Apple 1IGS Programmer’s Workshop The development environment

Reference

Apple IIGS Programmer’s Workshop Using the APW Assembler

Assembler Reference

Apple IIGS Programmer’s Workshop Using C on the Apple IIGS

C Reference

ProDOS 8 Technical Reference Manual Standard Apple II operating system

GS/OS Reference Apple 1IGS operating system and
System Loader

Human Interface Guidelines: Guidelines for the desktop interface

The Apple Desktop Interface

Apple Numerics Manual Numerics for all Apple computers

240 Apple IIGs Hardware Reference

= Figure A-1

Roadmap to the technical manuals

General Apple IIGS

To start finding
out about the
Apple IIGS

To learn how
the Apple IIGS
works

To start learning
to program the
Apple IIGS

To use the
Toolbox

To operate

Apple IIGS
Toolbox Reference
Volumes 1-2

Technical
Introduction
to the Apple IGS
Apple IIGS
|]I Hardware
Reference
Programmer's
Introduction
to the Apple IGS

1 6s/0s

on files

To debug

Apple IIGS
programs

|| Reference

GSBug and Debugging
il Tools Reference

Apple [IGS Programmer's Workshop

MPW IIGS cross-development system

To use APW

To program
inC

To program
in assembly
language

i C Reference

For descriptions of MPW IIGS manuals,
see MPW IIGS Tools Reference

Appendix A Roadmap to the Apple I1GS Technical Manuals 241

The introductory manuals

These books are introductory manuals for developers, computer enthusiasts, and other
Apple 1IGS owners who need technical information. As introductory manuals, their
purpose is to help the technical reader understand the features of the Apple IIGS,
particularly the features that are different from those of other Apple computers. Having
read the introductory manuals, you can refer to specific reference manuals for details
about a particular aspect of the Apple I1Gs.

The technical introduction

The Technical Introduction to the Apple IIGs is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the toolbox, and the development
environment.

Where the Apple 1IGs Owner’s Guide is an introduction from the point of view of the user,
the technical introduction manual describes the Apple I1Gs from the point of view of the
program. In other words, it describes the things the programmer has to consider while
designing a program, such as the operating features the program uses and the environment
in which the program runs.

The programmer’s introduction

When you start writing Apple 1IGS programs, the Programmer’s Introduction to the
Apple IIGs provides the concepts and guidelines you need. It is not a complete course in
programming, only a starting point for programmers writing applications that use the
Apple desktop interface (with windows, menus, and the mouse). It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
toolbox and the operating system. (An event-driven program waits in a loop until it
detects an event such as a click of the mouse button.)

242 Apple 1IGS Hardware Reference

The machine reference manuals

There are two reference manuals for the machine itself: the Apple IIGs Hardware Reference
(this book) and the Apple 1IGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

The hardware reference manual

The Apple 11Gs Hardware Reference is required reading for hardware developers, and it will
also be of interest to anyone else who wants to know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware, which provide a better understanding of the
machine’s features.

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and subroutines that are stored
in the machine’s read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the toolbox, which have their own manuals. The firmware reference manual
includes information about interrupt routines and low-level I/O subroutines for the serial
ports, the disk port, and the Apple Desktop Bus interface, which controls the keyboard
and the mouse. The manual also describes the Monitor, a low-level programming and
debugging aid for assembly-language programs.

The toolbox reference manuals

Like the Macintosh® computer, the Apple 1IGS has a built-in toolbox. The Apple IIGS
Toolbox Reference, Volume 1, introduces concepts and terminology and tells how to use
some of the tools. The Apple IIGS Toolbox Reference, Volume 2, contains information about
the rest of the tools and also tells how to write and install your own tool set.

Appendix A Roadmap to the Apple 1IGS Technical Manuals

Of course, you don't have to use the toolbox at all. If you only want to write simple
programs that don’t use the mouse, or windows, or menus, or other parts of the desktop
user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox to be indispensable.

In applications that use the desktop user interface, commands appear as options in pull-
down menus, and material being worked on appears in rectangular areas of the screen
called windows. The user selects commands or other material by using the mouse to move
a pointer around on the screen.

The programmer’s workshop reference manual

The Apple IIGs Programmer’s Workshop (APW) is the development environment for
the Apple 1IGS computer. APW is a set of programs that enables developers to create and
debug application programs on the Apple I1GS. The Apple IIGS Programmer’s Workshop
Reference includes information about the APW Shell, Editor, Linker, Debugger, and utility
programs; these are the parts of the workshop that all developers need, regardless of
which programming language they use.

The APW reference manual describes the way you use the workshop to create an
application, and includes examples and illustrations to show how this is done. In addition,
this manual documents the APW Shell to provide the information necessary to write an
APW utility or a language compiler for the workshop.

Included in the APW reference manual are complete descriptions of two standard

Apple IIGS file formats: the text file format and the object module format. The text file
format is used for all files written or read as “standard ASCII files” by Apple IIGS programs
running under ProDOS 16. The object module format is used for the output of all APW
compilers and for all files loadable by the Apple IIGS System Loader.

244 Apple 1IGS Hardware Reference

The programming-language reference manuals

Apple currently provides a 65C816 assembler and a C compiler. Other compilers can be
used with the workshop, provided that they follow the standards defined in the Apple IIGs
Programmer’s Workshop Reference.

There is a separate reference manual for each programming language on the Apple IIGS.
Each manual includes the specifications of the language and of the Apple IIGS libraries for
the language, and describes how to use the assembler or compiler for that language. The
manuals for the languages Apple provides are the Apple IIGS Programmer’s Workshop
Assembler Reference and the Apple 1IGS Programmer’s Workshop C Reference.

The Apple IIGS Programmer’s Workshop Reference and the two programming-language
manuals are available through the Apple Programmer’s and Developer's Association
(APDA™).

The operating-system reference manuals

There are three operating systems that run on the Apple 11S: GS/OS™, ProDOS® 16, and
ProDOS 8. Each operating system is described in its own manual: the GS/OS Reference,
Apple 11GS ProDOS 16 Reference, or the ProDOS 8 Technical Reference Manual. GS/OS uses
the full power of the Apple IIGS and is not compatible with earlier models of the Apple II.
The GS/OS Reference describes the features of GS/OS and also includes information
agbout the System Loader, which works closely with GS/OS to load programs into
memory. If you are writing a program that does any file manipulation or that writes to or
reads from a disk, you must have the GS/OS Reference. It is a rare applications programmer
who will not need this book at some time; for system programmers, it is essential.

GS/0S maintains a complete set of ProDOS 16 calls and implements them just as ProDOS
16 does. Therefore, it is unlikely that you will need to refer to the Apple IIGs ProDOS 16
Reference.

ProDOS 8, previously called ProDOS, is the standard operating system for most Apple 1I
computers with 8-bit CPUs. ProDOS also runs on the Apple 1IGS, but it cannot access
certain advanced Apple IIGs features. You need the ProDOS 8 Technical Reference Manual
only if you are writing programs that can run on 8-bit Apple II computers.

Appendix A Roadmap to the Apple 1IGS Technical Manuals

245

APW and MPW manuals

Apple provides two development environments for writing Apple 1IGS programs. See
Figure A-1.

= The Apple IIGS Programmer’s Workshop (APW): APW is a native development
system—it runs on the Apple 1IGS and produces Apple 1IGS code. It is described in the
Apple 1IGS Programmer’s Workshop Reference and related language books.

= The Apple IS Macintosh Programmer’'s Workshop (MPW): MPW is a cross-
development system—it runs on the Macintosh, but produces Apple 1IGS code. Much
of MPW IIGs is described in separate MPW 1IGS language reference manuals, but the
parts needed for cross-development—the editor and the build tools—are described in
the Macintosh Programmer’s Workshop Reference. That book is the only Macintosh
manual you need when using MPW I1Gs.

The all-Apple manuals

In addition to the Apple IIGS manuals mentioned above, there are two manuals that apply
to all Apple computers: Human Interface Guidelines: The Apple Desktop Interface and Apple
Numerics Manual. If you develop programs for any Apple computer, you should know
about those manuals.

The Human Interface Guidelines manual describes Apple’s standards for the desktop
interface of any program that runs on an Apple computer. If you are writing a commercial
application for the Apple IIGS, you should be fully familiar with the contents of this
manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANE®), a full implementation of the IEEE Standard for Binary Floating-Point Arithmetic
(IEEE Std 754-1985). The functions of the Apple 1IGs SANE tool set match those of the
Macintosh SANE package and of the 6502 assembly-language SANE software. If your
application requires accurate or robust arithmetic, you'll probably want to use the SANE
routines in the Apple IIGS. The Apple 11Gs Toolbox Reference tells how to use the SANE
routines in your programs. The Apple Numerics Manual is the comprehensive reference for
the SANE numerics routines.

246 Apple IIGs Hardware Reference

Appendix B International Keyboards

Apple makes different versions of the Apple IIGS for different countries.
The different versions have different keyboards and display characters
that reflect the different typing conventions of the different countries.
The ADB keyboard on the Apple IIGS is available in the following
versions:

m US. English

m UK English

m Canadian

m French

m German

m [talian

m Spanish

m Swedish

The keyboards on the localized versions of the Apple 1IGS are all
mechanically the same; that is, the shapes and arrangement of the keys
are the same—only the legends are different. The character decodings
for the different versions are all stored in the keyboard decoder ROM. In
addition to the international character sets listed above, the keyboard
decoder ROM contains characters for Danish and the Dvorak keyboard

layouts. Figures B-1 through B-8 show the legends on the different
keyboards.

247

s Figure B-1 U.S. English keyboard

<
Podle e s e e [e) o |+ *
esc | 1 2 3 4 5 6 7 8 9 0 - = delete clear
' { }
tab Q W || E R T Y U / 0 P [7 +
control A S D F G ||H |J K L ; ' return 4 -
< |I> ?
shift z X C 4 B N M , . / shift 1
caps -
lock lloption F \\ « s> e T 0 enter
= Figure B-2 UK. English keyboard
<
e (e s 1% |~ e |) - l+ *
esc | 1 2 3 4 5 6 7 8 9 0 - = delete clear
{ }
tab Q W || E R T Y U / 0 P 7 +
control |A IS [lD [|F |G |H |v |k |t |: | |retun 4 -
< ||> ?
shift V4 X C % B N M s . / shift 1
caps || s
lock lloption X /\ e b e T 0 enter
= Figure B-3 Canadian keyboard
<
e (#£8 1% [(~§1& |~ [|) |_ |+ *
esc | 1 2 3 4 5 6 7 8 9 0 - = delete clear
{efl}
tab Q W (| E R T Y U / 0 P [al] v 7 +
control A S D F G H J K L , ! return 4 -
< |> [|?¢
shift z X C v B N M f . / e |l shift 1
caps ~/ | ?
lock |loption FHll- . Ve s 1o |7 0 enter

248 Apple Iigs Hardware Reference

» Figure B-4 French keyboard

<

1 |2 4 |5 e |7 I8 9 Jo B i
esc J& Jle 7 J' N Js Je ! Je Ja) = | delete = = |/
— A |z | R [T Y (u |1 o [P |~ | rarae

%
contol @ S |0 |F |l |H |v |k |t M |7 | = 4 |5 |6 |-
? / |+
N wolx Jlc v (s [~n |: [, | [= [1]2 |3
> £

4 |option K< ‘ > e |7 0 N

= Figure B-5 German keyboard

<

roleo s s e e |7 ¢ 1) = 12 |)
esc |1 2 3 4 5 6 7 8 9 0 B ! delete X || = /
— Q |w e |r [T |z |u [l1 o [P (U |+ 7 18 J9 |+
control A S D |F |G |H |v |k L [|O [|A |= 4 |5 |6 |-
& y |x [c |v B [N M |, - e 1 |2 |3

> A N
2 |loption Hl< # e S 0. 0 N
= Figure B-6 Italian keyboard
<

12 |3 |4 |5 |6 |7 |8 9 o |_ I+)

esc || & “ (¢ é) £ a é - = delete X | = /
A *
— Q 1z | R |T |y Ju l!r o P |1 |$ 7 s 9 |+
%
conol A |s |p |F |l |H |v |k |t M |7 |= 4 |5 |6 |-
? ARV
o wolx Jlc v (B |~N |, |, |- lo Ilo 1 Jl2 |3
>

< |loption H| < § |- s e |0 0 ,

Appendix B International Keyboards

w Figure B-7 Spanish keyboard

<
e e 18 % 2 e I o) T 1+ .
esc | 1 2 3 4 5 6 7 8 9 0 - = delete
— Ja qw e |r |t v v |/ lo|pr | |[° +
control |A IS D |F |G |H |J [k L |N ;: - -
- Z |x Jc |v B [N |M 7 / g &
< |loption |2 f . I A o
= Figure B-8 Swedish keyboard
<
PolE oL e & |/ T) =12 .
esc | 1 2 3 4 5 6 7 |8 9 jo + ! delete
— Q W JJE JR |T |y Ju |1 Jlo |p |A f +

control |lA |S ||D |F |G |H |v |k L [6 |4 || =

<> Z |x Jc v |B [N M | = e
< loption 22 é) . N . -
250 Apple IIgs Hardware Reference

Appendix C The Character Generator

This appendix describes the hardware character generator for the
40-column and 80-column text displays. For information about text
fonts in Super Hi-Res graphics displays, refer to the QuickDraw™ II
tool set in Apple 11GS Toolbox Reference, volume 1.

251

The character generator ROM

The ROM contains the dot patterns making up the characters in the 40-column and
80-column displays.

U.S. characters

Figure C-1 shows the characters for the U.S. versions of the computer.

= Figure C-1 U.S. characters

Uppercase characters

QABCDEFGHIJKLMNOPQRSTUVWXYZ[\]

Lowercase characters

abcdefghijklmnopqrstuvwxyz{l}

~

Special characters

,!)"#$%&'()*+,_./0123456789:;<=>

International characters
For other countries, localized versions of the Apple I1Gs substitute appropriate characters

for some of the special characters used in the text displays. Table C-1 shows those
characters.

252 Apple 1IGS Hardware Reference

= Table C-1

International characters

Language

Equivalent characters

U.S. English
U.K. English
French
Danish
Spanish
Italian
German
Swedish

L

@

® W W) D @ W @

[\
[\
"¢
E @
i N
"¢
A 0O
A 0O

]
]
S
A
¢
é u
g -
A

B D —

oo

I

I
u e
s a -~
n ¢ ~
o e 1
6 u B
o a -~

MouseText characters

The character ROM includes several graphic characters used in displaying the desktop user
interface in text mode. Figure C-2 shows those characters.

= Figure C-2

MouseText characters

192/$C0O 193/$C1 194/8C2 195/$C3 196/$C4 197/8Ch 198/$C6 199/8C7
: i E) '. o 0 & ‘ ine| M’ : ‘. T - .‘. ... an| !!?‘#::
ot taes a8 8 H s kgilii!iiiiﬁ as[se: 3 H H T #Eﬁ:umimin
200/$C8 201/%C9 202/$CA 203/$CB 204/$CC 205/$CD 206/$CE 207/$CF
ummama: HHHHHH S Hee [Saussnnsusnunnuils, 5 H e
o ;;I!!I!!i!!!!! e as % o E e SEeici ; % &

i giisis | BEeR e e oot 2
HIETHHIT CrmiOeei CHOWS] (RHHED T R i s
208/$D0 209/$D1 210/$D2 211/$D3 212/8D4 213/8D5 214/$D6 215/8D7
H el H aanek Adatseg | % ;!!!!!!!I!!i;i!: Ranar T e
soso s S TR AR
216/$D8 217/$D9 218/8DA 219/$DB 220/$DC 221/8DD
'LYI‘“ ‘l]%’]i : i ! 3 il’? o | .I.}.lﬂll\ }E‘—j‘i{ﬁ IEI 1 ﬁ 1171 1 11

Appendix C The Character Generator

253

Appendix D Conversion Tables

This appendix briefly discusses bits and bytes and what they can
represent, and peripheral identification numbers. It also contains
conversion tables for hexadecimal to decimal and negative decimal,
and a number of 8-bit codes.

These tables are intended for convenient reference. This appendix is
not intended as a tutorial for the materials discussed. The brief section
introductions are for orientation only.

255

Bits and bytes

This section discusses the relationships between bit values and their position within a
byte. Here are some rules of thumb regarding the 65C810:

m A bit is a binary digit; it can be eithera 0 ora 1.

m A bit can be used to represent any two-way choice. Some choices that a bit can
represent in the Apple IIGS are listed in Table D-1.

m Bits can also be combined in groups of any size to represent numbers. Most of the
commonly used sizes are multiples of four bits.

m Four bits constitute a nibble (sometimes spelled nybble).

= One nibble can represent any of 16 values. Each of these values is assigned a number
from 0 through 9 or a letter from A through F.

m Eight bits (two nibbles) make a byte.

m One byte can represent any of 16 times 16 or 256 values. The value can be specified by
exactly two hexadecimal digits.

m Bits within a byte are numbered from bit 0 on the right to bit 7 on the left.

s The bit number is the same as the power of 2 that it represents, in a manner completely
analogous to the digits in a decimal number.

m Fach memory location in the Apple IIGS contains one 8-bit byte of data.

m How byte values are interpreted depends on whether the byte is an instruction in a
language, part or all of an address, an ASCII code, or some other form of data.
Tables D-6 through D-9 list some of the ways bytes are commonly interpreted.

m Two bytes make a word. The 16 bits of a word can represent any one of 256 times 256
or 63,536 different values.

m Three bytes make an address. The 24 bits of an address can represent any one of
256 times 65,536 or 16,777,216 different values.

m The 65C8106 uses a 24-bit address to identify a memory location. It can therefore
distinguish among 16,777,216 (16 MB) locations at any given time.

m A memory location is 1 byte of a 250-byte page. The low-order byte of an address
specifies the location in the page. The middle byte specifies the memory page in a
05530-byte (64K) memory bank. The high-order byte specifies which 64K memory
bank the byte is in.

256 Apple lIGs Hardware Reference

= Table D-1

What a bit can represent

Context Representing 0= 1=

Binary number Place value 0 1 x place power
Logic Condition False True

Any switch Position Off On

Any switch Position Clear* Set

Serial transfer Beginning Start Carrier only
Serial transfer Data 0 value 1 value
Serial transfer Parity SPACE MARK
Serial transfer End Stop bit(s)
Serial transfer Communication state BREAK Carrier
Program Status register bit N Neg. result? No Yes
Program Status register bit v Overflow? No Yes
Program Status register bit B BRK command? No Yes
Program Status register bit d Decimal mode? No Yes
Program Status register bit I IRQ interrupts Enabled Disabled
Program Status register bit Z Zero result? No Yes
Program Status register bit ¢ Carry required? No Yes

*

Sometimes ambiguously termed reset.

Hexadecimal and decimal numbers

Use Table D-2 to find the binary equivalent of a known hexadecimal or decimal number.

= Table D-2 Binary, hexadecimal, and decimal equivalents

Binary Hex Dec Binary Hex Dec
0000 $0 0 1000 $8 8

0001 §1 1 1001 $9 9

0010 §2 2 1010 SA 10

0011 $3 3 1011 $B 11

0100 $4 + 1100 $C 12

0101 $5 5 1101 $D 13

0110 $6 0 1110 SE 14

0111 87 7 1111 $F 15

Appendix D Conversion Tables

257

Use Table D-3 to determine the decimal weight of a hexadecimal digit in each of four

places.

= Table D-3 Hexadecimal and decimal powers
Digit $x000 $0x00 $00x0 $000x
F 01,440 3,840 240 15
E 57,344 3,584 224 14
D 53,248 3,328 208 13
C 49,152 3,072 192 12
B 45,056 2,816 176 11
A 40,960 2,560 160 10
9 36,804 2,304 144 9
8 32,768 2,048 128 8
7 28,672 1,792 112 7
0 24,576 1,536 9% 0
5 20,480 1,280 80 5
4 16,384 1,024 04 4
3 12,288 768 48 3
2 8,192 512 32 2
1 4,096 256 16 1

To convert a hexadecimal number to a decimal number, find the decimal numbers
corresponding to the positions of each hexadecimal digit. Write them down and add
them up. For example:

$3C =2 SFD47 = 2

$30 = 48 SFO000 = 61440

$0C = 12 $ DOO = 3328
$ 40 = 64

$3C = 60 $ 7 = 7

SFD47 = 64839

To convert a decimal number to hexadecimal, subtract from the decimal number the
largest decimal entry in the table that is less than it. Write down the hexadecimal digit
(noting its place value) also. Now subtract the largest decimal number in the table that is
less than the decimal remainder, and write down the next hexadecimal digit. Continue
until you have 0 left. Add up the hexadecimal numbers. For example:

258 Apple IIGS Hardware Reference

16215 = § 2
16215 - 12288 = 3927 12288 = $7000
3927 - 3840 = 87 3840 = $ FOO
87 - 80 = 7 80 = $ 50
7 7 =38 7

16215 = $7TF57

Hexadecimal and negative-decimal numbers

If a number is larger than decimal 32,767, Applesoft BASIC allows you to use the negative-
decimal equivalent of the number. Table D-4 is set up to make it easy for you to convert a
hexadecimal number directly to a negative-decimal number.

= Table D-4 Hexadecimal to negative-decimal conversion

Digit $x000 $$0x00 $500x0 $$000x
0 0 0 -1

E -4,096 =250 -16 -2

D -8,192 =512 =32 -3

C _12,288 768 48 4

B 16384 -1,024 —64 -5

A -20,480 -1,280 -80 -0

9 -24,576 -1,536 -96 -7

8 -28,672 -1,792 -112 -8

7 2,048 128 -9

0 -2,304 -144 -10

5 -2,5600 -160 -11

4 2816 -176 12

3 -3,072 -192 -13

2 -3,328 -208 -14

1 -3,584 -224 -15

0 3840 —240 ~16

To perform this conversion, write down the four decimal numbers corresponding to the
four hexadecimal digits (0's included). Then add their values (ignoring their signs for a

Appendix D Conversion Tables

259

moment). The resulting number, with a minus sign in front of it, is the desired negative-
decimal number. For example:

$CO010 = - 2
$C000: -12288 $ 000: - 3840 $ 10: - 224 S 0: - 16
$C010 -16368

To convert a negative-decimal number directly to a positive-decimal number, add it
t0 65,536. (This addition ends up looking like subtraction.) For example:

-151 = + 2
65536 + (-151) = 65536 - 151 = 65385

To convert a negative-decimal number to a hexadecimal number, first convert it to a
positive-decimal number, then use Table D-3.

Peripheral identification numbers

Many Apple products now use peripheral identification numbers (called PIN numbers) as
shorthand to designate serial device characteristics. The Apple 1T series Universal Utilities
disk presents a menu from which to select the characteristics of, say, a printer or modem.
From the selections made, it generates a PIN for the user. Other products have a ready-
made PIN that the user can simply type in.

Figure D-1 shows the format of a PIN number. Table D-5 is a definition of the PIN number
digits. When communication mode is selected, the seventh digit is ignored.

= Figure D-1 Format of PIN numbers

Mode X

X X
Data bits/stop bits J J
Bits per second

Echo/No echo —

/X X X X

Parity —

Linefeed/No linefeed —

Carriage returns —

200 Apple 1IGs Hardware Reference

s Table D-5 Codes for PIN numbers

PIN PIN
number number
digit Codes digit Codes
Mode 1 = Printer mode Parity 1 = No parity :
2 = Communication mode* 2 = Even parity (total on = even) ;
3 = 0dd parity (total on = odd) i
Data bits 4 = MARK parity (parity bit = 1)
Stop bits 1 =6 data bits, 1 stop bit 5 = SPACE parity (parity bit = 0)
2 = (data bits, 2 stop bit
3 =7 data bits, 1 stop bit Echo/
4 =7 data bits, 2 stop bits No echo 1 = Do not echo output on screen
5 = 8 data bits, 1 stop bit 2 = Echo output on screen
6 = 8 data bits, 2 stop bits
Line feed/
Bits per No line feed 1= Do not generate LF after CR
second 1 = 110 bits per second 2 = Generate LF after CR
2 =300 bits per second
3 = 1200 bits per second Carriage
4 = 2400 bits per second returns 1 = Do not generate CR*
5 = 4800 bits per second 2 = Generate CR after 40 characters
6 = 9600 bits per second 3 = Generate CR after 72 characters
7 =19200 bits per second 4 = Generate CR after 80 characters

5 = Generate CR after 132 characters

*If you select communication mode, then the seventh digit must be 1.

For example, 252/1111 means:

2 = Communication mode 1 = No parity
5 = 8 data bits, 1 stop bit 1 = Do not echo output to display
2 =300 baud (bits per second) 1 = No line feed after carriage return

1 = Do not generate carriage returns

Appendix D Conversion Tables 261

ASCII code conversion

Tables D-6 through D-9 show the first 128 ASCII characters ($0 through $7F). Note that
only the low 7 bits of each character value are shown. The next 128 ASCII characters ($80
through $FF), not shown here, are identical to the one listed here, only with the high bit
set. Unless otherwise noted, every ASCII character value above $7F (127 decimal)
generates the same character as that value with the high bit off. Here is how to interpret
these tables:

m The “Binary” column has the 7-bit code for each ASCII character.
m The “ASCII character” column gives the ASCII character name.

m The “Interpretation” column spells out the meaning of special symbols and
abbreviations, where necessary.

m The “What to type” column indicates what keystrokes generate the ASCII character
(where it is not obvious).

m The columns marked “Primary” and “Alternate” indicate what displayed character
results from each code when using the primary or alternate display character set,
respectively. Boldface is used for inverse characters; italic is used for flashing
characters.

Note that the values $40 through $5F (and $CO through $DF) in the alternate character
set are displayed as MouseText characters (Figure C-2) if the firmware is set to do so,
or if the firmware is bypassed .

Note: The primary and alternate displayed character sets in Tables D-6 through D-9 are
the result of firmware mapping. See “Text Displays,” in Chapter 4, for more details on
character sets.

262 Apple IIGS Hardware Reference

= Table D-6

Control characters, high bit off

Binary Dec Hex lc\lfaﬁ'zlcter Interpretation What to type Primary Alternate
0000000 0 $00 NUL Blank (null) Control-@ @ @
0000001 1 $01 SOH Start of Header Control-A A A
0000010 2 $02 STX Start of Text Control-B B B
0000011 3 $03 ETX End of Text Control-C c C
0000100 4 $04 EOT End of Transm. Control-D D D
0000101 5 $05 ENQ Enquiry Control-E E E
0000110 6 $06 ACK Acknowledge Control-F F F
0000111 7 $07 BEL Bell Control-G G G
0001000 8 $08 BS Backspace Control-H or Left-Arrow-H ~ H H
0001001 9 $09 HT Horizontal Tab Control-I or Tab I [
0001010 10 $0A LF Line Feed Control-J or Down-Arrow-]]]
0001011 11 $0B VT Vertical Tab Control-K or Up-Arrow K K
0001100 12 $0C FF Form Feed Control-L L L
0001101 13 $OD CR Carriage Return Control-M or Return M M
0001110 14 $OE SO Shift Out Control-N N N
0001111 15 $OF ST Shift In Control-O O O
0010000 16 $10 DLE Data Link Escape Control-P p P
0010001 17 $11 DCI Device Control 1 Control-Q Q Q
0010010 18 §12 DC2 Device Control 2 Control-R R R
0010011 19 $13 DC3 Device Control 3 Control-S S S
0010100 20 $14 DC4 Device Control 4 Control-T T T
0010101 21 $15 NAK Neg. Acknowledge Control-U or Right-Arrow U U
0010110 22 $16 SYN Synchronization ~ Control-V vV oV
0010111 23§17 ETB End of Text Blk. Control-W LY
0011000 24 $18 CAN Cancel Control-X X X
0011001 25 $19 EM End of Medium Control-Y Y Y
0011010 26 $1A SUB Substitute Control-Z 7 Z
0011011 27 $1B ESC Escape Control-{ or Escape [[
0011100 28 S$1C FS File Separator Control-\ \ \
0011101 29 $1ID GS Group Separator Control-]]]
0011110 30 $1E RS Record Separator Control-A AA
0011111 31 $I1F US Unit Separator Control-

Appendix D Conversion Tables

263

= Table D-7 Special characters, high bit off

ASCII
Binary Dec Hex character Interpretation What to type Primary Alternate
0100000 32 $20 SP Space Space bar
0100001 33 $21 ! ! !

0100010 34 $22. " " "
0100011 35 §23 #
0100100 36 $24 §
0100101 37 $25 %
0100110 38 $26 &

(

)

VA'%Q\O{’}
vﬁ‘%o\om

0100111 39 $27 Apostrophe

0101000 40 $28

0101001 41 $29

0101010 42 $2A

0101011 43 $2B 4+ + +
0101100 44 $2C Comma , ,
0101101 45 $2D - Hyphen

0101110 46 $2E . Period .
0101111 47 $2F / / /
0110000 48 $30 0 0 0
0110001 49 $31 1 1 1
0110010 50 $32 2 2 2
0110011 51 $33 3 5 3
0110100 52 $34 4 4 4
0110101 53 $35 5 5 5
0110110 54 $36 6 6 6
0110111 55 $37 7 7 7
0111000 56 $38 8 8 8
0111001 57 $39 9 9 9
0111010 58 $3A : :
0111011 59 $3B ; H
0111100 60 $3C < < <
0111101 61 $3D = = =
0111110 62 $3E > > >
0111111 63 $3F ? ? ?

264 Apple IIGs Hardware Reference

= Table D-8 Uppercase characters, high bit off

ASCII

Binary Dec Hex character Interpretation What to type Primary Alternate
1000000 64 $40 @ @ «
1000001 65 $41 A A (od
1000010 66 $42 B B N
1000011 67 $43 C C X
1000100 68 $44 D D v
1000101 69 $45 E E]
1000110 70 $46 F F]
1000111 71 $47 G G =
1001000 72 $48 H H €«
1001001 73 $49 1 I
1001010 74 $4A] J N2
1001011 75 $4B K K 0
1001100 76 $4C L I -
1001101 77 $4D M M d
1001110 78 $4E N N []
1001111 79 $4F O 0 <
1010000 80 $50 P P >
1010001 81 $51 Q 0 ¥,
1010010 82 §52 R R -+
1010011 83 $53 S S -
1010100 84 $54 T T L
1010101 85 8§55 U U >
1010110 86 $56 V Vv -
1010111 87 $57 W W B8
1011000 88 $58 X X (-
1011001 89 $59 Y Y o
1011010 90 $5A Z 7 |
1011011 91 $5B [Opening bracket [2
1011100 92 $5C \ Back slash \ —
1011101 93 $5D] Closing bracket / F
1011110 94 $SE A Caret A |
1011111 95 $5F _ Underline |

Note: 1f the high bit is set, the MouseText character is replaced with the equivalent from the primary character set.

Appendix D Conversion Tables 265

= Table D-9 Lowercase characters, high bit off

Binary Dec Hex :lfaﬁ':llcter Interpretation What to type Primary Alternate
1100000 96 $60 ° Grave accent :
1100001 97 $61 a /' a
1100010 98 $62 b N b
1100011 99 $63 ¢ # C
1100100 100 $64 d $ d
1100101 101 $65 e % e
1100110 102 $66 f & f
1100111 103 $67 g Cg
1101000 104 $68 h (h
1101001 105 $69 i) i
1101010 106 $6A | f
1101011 107 $6B k + k
1101100 108 $6C 1 1
1101101 109 $6D m - m
1101110 110 $6E n . n
1101111 111 $6F 0 / o
1110000 112 $70 p 0 p
1110001 113 $71 g 1 q
1110010 114 $72 r 2 r
1110011 115 $73 S 3]
1110100 116 $74 t 4 t
1110101 117 $75 u 5 u
1110110 118 $76 \% 6 v
1110111 119 $77 w 7 w
1111000 120 $78 X 8 X
1111001 121 $79 9 'y
1111010 122 $7A z : z
1111011 123 $7B | Opening brace ; {
1111100 124 $7C | Vertical line < |
1111101 125 $7D | Closing brace =
1111110 126 $7E ~ Overline (tilde) > ~
1111111 127 $7F DEL Delete/rubout 7 DEL

206 Apple IIGS Hardware Reference

Appendix E Frequently Used Tables

This appendix contains frequently used tables from throughout the
manual. The original table number is given in a footnote to the table.

267

= Table E-1* Language-card bank select switches

Name Action Location Function
R $C080 Read this location to read RAM, write-protect
RAM, and use $D000 bank 2.
ROMIN RR $C081 Read this location twice to read ROM, write-
enable RAM, and use $D000 bank 2.
R $C082 Read this location to read ROM, write-protect
RAM, and use $D000 bank 2.
LCBANK2 RR $C083 Read this location twice to read RAM, write-
enable RAM, and use $D000 bank 2.
R $C0883 Read this location to read RAM, write-protect
RAM, and use $D000 bank 1.
RR $C089 Read this location twice to read ROM, write-
enable RAM, and use $D000 bank 1.
R $CO8A Read this location to read ROM, write-protect
RAM, and use $D000 bank 1.
RR $C08B Read this switch twice to read RAM, write-enable
RAM, and use $D000 bank 1.
RDLCBNK?2 R7 $CO11 Read this location and test bit 7 for switch status:
$D000 bank 2 (1) or bank 1 (0).
RDLCRAM R7 $C012 Read this location and test bit 7 for switch status:
RAM (1) or ROM (0).
SETSTDZP W $C008 Write this location to use main bank, page 0 and
page 1.
SETALTZP W $C009 Write this location to use auxiliary bank, page 0
and page 1.
RDALTZP R7 $C016 Read this location and test bit 7 for switch status:

auxiliary (1) or main (0) bank.
* Table 3-1

268 Apple 1IGS Hardware Reference

= Table E-2* Auxiliary-memory select switches

Location
Name Function Hex Dec Notes
RDCARDRAM Read auxiliary memory $C003 49155 Write
RDMAINRAM Read main memory $C002 49154 Write
RDRAMRD Read switch status $C013 49171 Read and test bit 7
(1=auxiliary, O=main)
WRCARDRAM Write auxiliary memory $C005 49157 Write
WRMAINRAM ~ Write main memory $C004 49156 Write ;
RDRAMWRT Read switch status $CO14 49172 Read and test bit 7 :
(1=auxiliary, 0=main)
SETS0COL Access display page $C001 49153 Write
CLRSOCOL Use RAM switches ($§C002-5,13,14) $C000 49152 Write
RD8OCOL Read switch status $CO18 49176 Read and test bit 7

(1=80-column access on, f
0=80-column access off) ;
TXTPAGE2 Text Page 2 on (auxiliary memory) ~ $C055 49237 Read or write :

TXTPAGE1 Text Page 1 on (main memory) $C054 49236 Read or write 1

RDPAGE2 Read switch status $COIC 49180 Read and test bit 7 ‘*
(1=Page 2, 0=Page 1)

HIRES Access Hi-Res pages $C057 49239 Read or write

LORES Use RAM switches ($§C002-5,13,14) $C056 49238 Read or write

RDHIRES Read switch status $COID 49181 Read and test bit 7 :
(1=HIRES on, 0=off) v

SETALTZP Auxiliary stack and direct page $C009 49161 Write

SETSTDZP Main stack and direct page $C008 49160 Write

RDALTZP Read switch status $CO16 49174 Read and test bit 7

(1=auxiliary, O=main)
* Table 3-3

Appendix E - Frequently Used Tables 269

= Table E-3* Standard Apple II video display specifications

Display modes 40-column text; map: Figure 4-5.
80-column text; map: Figure 4-6.
Lo-Res color graphics; map: Figure 4-7.
Hi-Res color graphics; map: Figure 4-8.
Double Hi-Res color graphics; map: Figure 4-9.

Text capacity 24 lines by 80 columns (character positions).

Character set 128 ASCII characters. (See Appendix C for a list of display
characters.)

Display formats Normal, inverse, flashing, MouseText (Table 4-10).

Lo-Res color graphics 16 colors (Table 4-15): 40 horizontal by 48 vertical;
map: Figure 4-7.

Hi-Res color graphics 0 colors (Table 4-14): 140 horizontal by 192 vertical

(restricted). Black-and-White: 280 horizontal by
192 vertical; map: Figure 4-8.
Double Hi-Res color graphics 16 colors (Table 4-16): 140 horizontal by 192 vertical (no
restrictions). Black-and-White: 560 horizontal by
192 vertical; map: Figure 4-9.

* Table 4-4

= Table E-4* Video display locations

Lowest address Highest address

Display
Display mode page Hex Dec Hex Dec
40-column text, 1 $0400 1024 S$O7FF 2047
Lo-Res graphics 21 $0800 2048 SOBFF 3071
80-column text 1 $0400 1024 SO7FF 2047

2t $0800 2048 $OBFF 3071
Hi-Res graphics 1 $2000 8192 $3FFF 10383

2 $4000 16384 $SFFF 24575
Double High-Res 11 $2000 8192 $3FFF 16383
graphics 2% $4000 16384 $5FFF 24575

* Table 4-6

T Lo-Res graphics on Page 2 is not supported by firmware; for instructions on how to switch pages,
refer to the section “Display Mode Switching” in Chapter 4.

 See the section “Double Hi-Res Graphics” in Chapter 4.

270 Apple IIGS Hardware Reference

= Table E-5* Display soft switches

Name Actiont Location Function

CLR80COL W $C000 (49152) Disable 80-column store.

SET80COL W $C001 (49153) Enable 80-column store.

CLR8OVID W $C00C (49164) Disable 80-column hardware.

SET80VID W $CO0D (49165) Enable 80-column hardware.
\

CLRALTCHAR SCOOE (49166) Normal lowercase character set; flashing uppercase
character set.
SETALTCHAR W $COOF (49167) Normal, inverse character set; no flashing.
RD80COL R7 $CO18 (49176) Read CLR/SET80COL switch:
1 = 80-column store enabled.
RDVBL BAR R7 $C019 (49177) Read vertical blanking(VBL):
1 = not VBL,
RDTEXT R7 SCOIA (49178) Read TXTCLR/TXTSET switch: 1 = text mode
enabled.
RDMIX R7 $CO1B (49179) Read MIXCLR/MIXSET switch: 1 = mixed mode
enabled.
RDPAGE?2 R7 SCOIC (49180) Read TXTPAGE1/TXTPAGE2 switch: 1 = text Page 2
selected.
RDHIRES R7 $COID (49181) Read HIRES switch: 1 = Hi-Res mode enabled.
ALTCHARSET R7 SCOIE (49182) Read CLRALTCHAR/SETALTCHAR switch:
1 = alternate character set in use.
RDS0OVID R7 SCOIF (49183) Read CLRSOVID/SET80VID switch:
1 = 80-column hardware in use.
RDDHIRES R7 SCO7F (49279) Read SETAN3/CLRAN3 switch:
1 = Double Hi-Res graphics mode selected.
TXTCLR R/W $CO50 (49232) Select standard Apple II graphics mode or, if
MIXSET on, mixed mode.
TXTSET R/W SCO51 (49233) Select text mode only.
MIXCLR R/W $CO52 (49234) Clear mixed mode.
MIXSET R/W $C053 (49235) Select mixed mode.

TXTPAGE1 R/W 5C054 (49236) Select text Page 1.
TXTPAGE2 R/W $C055 (49237) Select text Page 2, or, if SETS8OCOL on, text Page 1
in auxiliary memory.

LORES R/W $CO56 (49238) Select Lo-Res graphics mode.

HIRES R/W $CO57 (49239) Select Hi-Res graphics mode, or, if SETAN3 is on,
select Double Hi-Res graphics mode.

SETAN3 R/W SCOSE (49246) Enable Double Hi-Res graphics mode.

CLRAN3 R/W SCOSF (49247) Disable Double Hi-Res graphics mode.

* Table 4-7 + W means write anything to the location, R means read the location. R/W means read or write, and
R7 means read the location and then check bit 7.

Appendix E - Frequently Used Tables 271

= Table E-6* Text window memory locations

Normal values Maximum values
Mini
Location value 40-column 80-column 40-column 80-column
Window
parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

Left edge 32 $20 00 $00 00 $00 00 $00 39 827 79 $4F
Width 33 $21 00 $00 40 $28 80 $50 40 $28 80 $50
Top edge 34 8§22 00 800 00 SO0 00 $00 23§17 23§17
Bottom edge 35 §23 01 $01 24 $18 24 $18 24 $18 24 $18

* Table 4-9

= Table E-7* Display character sets

Primary character set Alternate character set

Hex

values Character type Format Character type Format
$00-$1F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$5F Uppercase letters Flashing MouseText Inverse
$60-$7F Special characters Flashing Lowercase letters Inverse
$80-$9F Uppercase letters ~ Normal Uppercase letters Normal
$A0-$BF Special characters Normal Special characters Normal
$CO-$DF Uppercase letters ~ Normal Uppercase letters Normal
$E0-$FF Lowercase letters ~ Normal Lowercase letters ~ Normal
* Table 4-10

272 Apple IIGS Hardware Reference

= Table E-8* Lo-Res graphics colors

Nibble value Nibble value
Dec Hex Color Dec Hex Color
0 $00 Black 8 $08 Brown
1 $01 Deep red 9 $09 Orange
2 $02 Dark blue 10 SOA Light gray
3 $03 Purple 11 $0B Pink
4 $04 Dark green 12 $0C Light green
5 $05 Dark gray 13 $0D Yellow
0 $06 Medium blue 14 $0E Aquamarine
7 $07 Light blue 15 $OF White

Note: Colors may vary, depending on the controls on the monitor or television set.
* Table 4-14

= Table E-9* Hi-Res graphics colors

Bits 0-6 Bit 7 off Bit 7 on
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary, depending on the controls on the monitor or television set.
* Table 4-15

Appendix E Frequently Used Tables 273

= Table E-10* Double Hi-Res graphics colors

Repeated color pattern ab0 mbl ab2 mb3 Bit
Black $00 $00 $00 $00 0000
Deep red $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Dark gray $2A $55 $2A $55 0101
Green $66 $4C $19 $33 0110
Yellow SOE $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $60 $4C 1001
Light gray $55 $2A $55 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B §77 SOE $5D 1101
Aquamarine §77 SOF $5D $3B 1110
White $7F $7F $7F $7F 1111
* Table 4-16

= Table E-11* Palette and color starting addresses

Palettenumber Color $0 Color $1 Color $E Color $F

$0 $9E00-01 $9E02-03 $9E1C-1D $OE1E-1F
$1 $9E20-21 $9E22-23 $9E3C-3D $OE3E-3F
$2 $9E40-41 $OE42-43 $9E5C-5D $9ESE-SF
SF $OFE0-E1 $9FE2-E3 $OFFC-FD $OFFE-FF
* Table 4-20

= Table E-12* GLU registers

GLU registers Address Type
Sound Control register $C03C R/W
Data register $C03D R/W
Address Pointer register, low byte $CO3E R/W
Address Pointer register, high byte $CO3F R/W

* Table 5-1

274 Apple 1IGS Hardware Reference

= Table E-13* DOC register addresses

Frequency Frequency Wavetable Wavetable

Oscillator Low High Volume Data Pointer Control Size

number register register register register register register register

$00 $00 $20 $40 $60 $80 $AO $CO

$01 $01 $21 $41 $61 $81 SAl $C1

$02 $02 $22 $42 $62 $82 $A2 $C2

$03 $03 $23 $43 563 $83 $A3 $C3

$04 $04 $24 $44 $04 $84 $A4 $C4

$05 $05 §25 $45 $65 $85 A5 $C5

$06 $06 $20 $46 $60 $80 A0 $CO

$07 $07 §27 $47 $67 $87 SA7 $C7 |
$08 $08 $28 $48 $68 $88 $A8 $C8 |
$09 $09 $29 $49 $69 $89 $A9 $C9 |
SOA $0A $2A $4A $0A $8A $AA $CA

$0B $OB $2B $4B $OB $8B SAB $CB

$0C $0C $2C $4C $6C $8C SAC $CC

$0D $0C $2D $4D $6D $8D $AD $CD

$OE SOE $2E S4E SOE $8E SAE SCE

$OF SOF $2F $4F SOF $8F SAF $CF

$10 $10 §30 §50 §70 $90 $B0 $DO j1
511 §11 §31 551 §71 591 $B1 $D1 |
$12 $12 $32 $52 §72 $92 $B2 $D2 .
$13 513 $33 $53 $73 $93 $B3 $D3

0B S0B $2B $4B 6B 8B SAB SCB

$0C $0C $2C $4C $6C $8C SAC $CC

$0D $0C $2D $4D $6D $8D SAD $CD

$OE $OE $2E $4E SOE $8E SAE $CE

$OF $OF $2F S4F SOF $8F SAF $CF

$10 $10 $30 $50 $70 $90 $BO $DO

$11 $11 $31 $51 §71 $91 $B1 $D1

$12 $12 §32 $52 $72 §92 $B2 $D2

$13 $13 $33 $53 $73 593 $B3 $D3

$14 $14 $34 $54 §74 $94 $B4 SD4

$15 $15 $35 $55 §75 $95 $B5 $D5

$16 $16 §30 $56 §76 $96 $BO $DO6

§17 $17 $37 $57 §77 $97 $B7 $D7

$18 $18 $38 $58 $78 $98 $B8 $D8

$19 $19 $39 $59 $79 $99 $B9 $D9

(Continued)

Appendix E Frequently Used Tables 275

s Table E-13*

DOC register addresses (Continued)

Frequency Frequency Wavetable Wavetable
Oscillator Low High Volume Data Pointer Control Size
number register register register register register register register
$1A $1A $3A $5A $7A $9A $BA $DA
$1B $1B $3B $5B $7B $9B $BB $DB
$1C $1C $3C $5C $7C $9C $BC $DC
$1D $1D $3D $5D $7D $9D $BD $DD
$1Et $1E $3E $SE $7E $9E SBE $DE
$1Ft $1F $3F $5F $7F $9F $BF $DF
* Table 5-4

T These oscillators are reserved for system use. Use of these oscillators by the user may result in a system crash.

s Table E-14*

Disk-port soft switches

Address

Description

$COEO0
$COE1
$COE2
$COE3
$COE4
$COES
$COE6
$COE7
$COE8
$COE9
$COEA
$COEB
$COEC
$COED
$COEE
$COEF
* Table 7-3

Stepper motor phase 0 low
Stepper motor phase 0 high
Stepper motor phase 1 low
Stepper motor phase 1 high
Stepper motor phase 2 low
Stepper motor phase 2 high
Stepper motor phase 3 low
Stepper motor phase 3 high
Spindle motor enabled
Spindle motor disabled
Drive 0 select

Drive 1 select

Q6 select bit low

Q6 select bit high

Q7 select bit low

Q7 select bit high

276 Apple IIGS Hardware Reference

= Table E-15*

The TWM states

Q7 Q6 Spindle motor Operation

0 0 1 Read Data register

0 1 X Read Status register

1 0 X Read Handshake register
1 1 0 Write Mode register

1 1 1 Write Data register

* Table 7-4

= Table E-16*

SCC Command and SCC data register addresses

Register Channel A Channel B
SCC Command $C039 $C038
SCC data $C03B $CO3A

* Table 7-10

= Table E-17*

Annunciator memory locations

Annunciator Address

Number Pint State Hex Dec

0 15 Off $C058 49240
On $C059 49241

1 14 Off $CO5A 49242
On $C05B 49243

2 13 Off $C0O5C 49244
On $CO05D 49245

3 12 Off $COSE 49246
On $COSF 49247

* Table 7-14

T Pin numbers given are for the 16-pin IC connector on the circuit board.

Appendix E Frequently Used Tables

s Table E-18* Secondary I/O memory locations

Address

Soft switch Dec Hex Definition

SPKR 49200 $C030 Toggle speaker (read only).
CLRANO 49240 $C058 Clear annunciator 0.
SETANO 49241 $C059 Set annunciator 0.
CLRAN1 49242 $CO5A Clear annunciator 1.
SETAN1 49243 $C05B Set annunciator 1.
CLRAN2 49244 $C05C Clear annunciator 2.
SETAN2 49245 $C05D Set annunciator 2.
CLRAN3 49246 $COSE Clear annunciator 3.
SETAN3 49247 $COSF Set annunciator 3.
BUTN3 49248 $C060 Read switch 3 (read only).
BUTNO 49249 $C001 Read switch 0 (read only).
BUTN1 49250 $C062 Read switch 1 (read only).
BUTN2 49251 $C063 Read switch 2 (read only).
PADDLO $C064 49252 Read analog-input 0.
PADDL1 $C065 49253 Read analog-input 1.
PADDL2 $C066 49254 Read analog-input 2.
PADDL3 $C067 49255 Read analog-input 3.
PTRIG 49264 $C070 Analog-input reset.

* Table 7-15

s Table E-19* Peripheral-card RAM memory locations

Slot number
Base
address 1 2 3 4 5 6 7
$0478 $0479 $047A $047B $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF
$0578 $0579 $057A $057B $057C $057D $057E $057F
$05F8 $05F9 $0SFA $05FB $0SFC $05FD $05SFE $0SFF
$0678 $0679 $067A $067B $067C $067D $067E $067F
$06F8 $06F9 $O6FA $06FB $06FC $O6FD $06FE $O6FF
$0778 $0779 $077A $077B $077C $077D $077E $077F
$07F8 $07F9 $O7FA $07FB $07FC $O7FD $07FE $07FF
* Table 8-5

278 Apple IIGS Hardware Reference

s Table E-20*

Peripheral-card 1/O base addresses

Base Slot number

address 1 2 3 4 5 6 7
$C080 $C090 $COA0 $COBO $COCO $CODO $SCOEO $COFO
$C081 $C091 $COA1 $COB1 $COC1 $COD1 $COE1 $COF1
$C082 $C092 $COA2 $COB2 $C0C2 $COD2 $COE2 $COF2
$C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3
$C084 $C094 $COA4 $COB4 $COC4 $COD4 $COE4 $COF4
$C085 $C095 $COAS $COBS $COCS $COD5 $COE5 $COF5
$C086 $C096 $COA6 $COB6 $COCO $COD6 $COE6 $COF6
$C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7
$C088 $C098 $COA8 $COB8 $COC8 $COD8 $COE8 $COF8
$C089 $C099 $COA9 $COB9 $C0C9 $COD9 $COE9 $COF9
$CO8A $C09A $COAA $COBA $COCA $CODA SCOEA $COFA
$C08B $C09B $COAB $COBB $COCB $CODB $COEB SCOFB
$C08C $C09C $COAC $COBC $COCC $CODC $COEC SCOFC
$C08D $C09D $COAD $COBD $COCD $CODD $COED $COFD
$CO8E $CO9E $COAE $COBE $COCE $CODE $COEE $COFE
$CO8F $CO9F $COAF $COBF $COCF $CODF SCOEF SCOFF
* Table 8-6

Appendix E Frequently Used Tables

279

Glossary

accumulator: The register in a computer’s
central processor or microprocessor where most
computations are performed.

ACIA: Acronym for Asynchronous
Communications Interface Adapter, a type of
communications IC used in some Apple
computers. Converts data from parallel to serial
form and vice versa. An ACIA handles serial
transmission and reception and RS-232-C signals
under the control of its internal registers, which
can be set and changed by firmware or software.
Compare Serial Communications Controller.

ADB: See Apple Desktop Bus.

address: A number that specifies the location of
a single byte of memory. Addresses can be given
as decimal or hexadecimal integers. The

Apple TIGS has addresses ranging from 0 to
16,777,215 (in decimal) or from $000000 to
SFFFFFF (in hexadecimal). A complete address
consists of a 4-bit bank number (800 to $FF)
followed by a 16-bit address within that bank
(80000 to SFFFF).

analog RGB: A type of color video monitor that
accepts separate analog signals for red, green,
and blue. The magnitude of each signal can vary
continuously, making possible many shades and
tints of color.

Apple Desktop Bus (ADB): An input bus and
protocol for connecting keyboards, mouse
devices, and graphics tablets to the Apple T1GS.
Chapter 6 provides details of the ADB.

AppleTalk connector: A piece of equipment—
consisting of a connection box, a short cable,
and an 8-pin miniature DIN connector—that
enables an Apple IIGS to be part of an AppleTalk
network.

AppleTalk local area network: Apple’s local
area network for Apple I and Macintosh
personal computers and the LaserWriter® and
ImageWriter® II printers. Like the Macintosh,
the Apple IIGS has the AppleTalk interface built
n.

Apple II: A family of computers, including the
original Apple II, the Apple II Plus, the Apple Ile,
the Apple Ilc, and the Apple IIGS. Compare
standard Apple IL

Apple IIGS Programmer’s Workshop (APW):
The development environment for the Apple 11GS
computer. It consists of a set of programs that
facilitate the writing, compiling, and debugging
of Apple IIGS application programs.

Apple IIGS toolbox: A collection of built-in
routines on the Apple IIGS that programs can call
to perform many commonly needed functions.
Functions within the toolbox are grouped into
tool sets.

application program or application: (1) A
program that performs a specific task useful to
the computer user, such as word processing,
database management, or graphics. Compare
controlling program, software, system
software.

281

application program or application: (2) On
the Apple 11GS, a program (such as the APW Shell)
that accesses ProDOS 16 and the toolbox
directly and that can be called or exited via the
Quit call. ProDOS 16 applications are file type
$B3.

APW: See Apple IIGS Programmer’s
Workshop.

ASCIL: Acronym for American Standard Code for
Information Interchange. (2) The standard
alphabetic, numeric, control, and special
characters represented by hexadecimal values $0
through $FF. ASCII data refers to these universal
256 codes.

aspect ratio: The ratio of an image’s width to its
height; for example, a standard video display has
an aspect ratio of 4:3.

assembler: A program that produces object files
(programs that contain machine-language code)
from source files written in assembly language.
The opposite of disassembler.

auxiliary slot: The special expansion slot within
the Apple Ile used for the Apple Ile 80-Column
Text Card or Extended 80-Column Text Card, and
also for the RGB monitor card. The slot is labeled
AUX.CONNECTOR on the circuit board.

bank: A 64K (65,530-byte) portion of the

Apple 11GS internal memory. An individual bank is
specified by the value of one of the 65C816
microprocessor’s bank registers.

bank-switched memory: On Apple II
computers, that part of the language-card
memory in which two 4K portions of memory
share the same address range ($D000-SDFFF).

binary: A method of numeric representation
using a base-2 system. Valid digits are 0 and 1.
Compare hexadecimal, decimal.

282 Apple IIGS Hardware Reference

bit: Short for binary digit. In the binary system,
the smallest unit of information, consisting of 0
or 1.

bit map: A set of bits that represents the
positions and states of a corresponding set of
items. In graphics, video pixels are represented
by a bit or bits in video display memory. See also
graphics.

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous, page-
aligned region of computer memory of arbitrary
size, allocated by the Memory Manager. Also
called a memory block.

block device or block I/0 device: A device
that transfers data to or from a computer in
multiples of one block (512 bytes) of characters
at a time. Disk drives are block devices.

boot: Another way to say start up. A computer
boots by loading a program into memory from an
external storage medium such as a disk. Boof is
short for bootstrap load : Starting up is often
accomplished by first loading a small program,
which then reads a larger program into memory.
The program is said to “pull itself up by its own
bootstraps.”

buffer: A holding area in the computer’s memory
where information can be stored by one program
or device and then read at a different rate by
another; for example, a print buffer or a ProDOS
16 1/0 buffer.

byte: A unit of information consisting of a
sequence of 8 bits. A byte can take any value
between 0 and 255 ($0 and SFF hexadecimal).
The value can represent an instruction, number,
character, or logical state.

carriage return (\r): A control code (ASCII 13)
generated by the Return key; in APW C, equal to
newline (\n).

carry flag: A status bit in the microprocessor,
used as an additional high-order bit with the
accumulator bits in addition, subtraction,
rotation, and shift operations.

cathode-ray tube: A display device, such as a
television picture tube, that produces images on
a phosphor-coated screen.

central processing unit (CPU): The part of the
computer that performs the actual computations
in machine language. See also microprocessor.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters—such as letters,
numbers, and punctuation—can be displayed on
the monitor screen and printed on a printer. Most
characters are represented in the computer as 1-
byte values.

character device or character 1/0 device: A
device that transfers data to or from a computer
as a stream of individual characters. Keyboards
and printers are character devices.

character generator: The IC responsible for
providing all text and special characters to the
computer that may be displayed on the video
monitor.

CMOS: Acronym for complementary metal oxide
semiconductor, one of several methods of
making integrated circuits out of silicon. CMOS
devices are characterized by their low power
consumption. CMOS techniques are derived
from MOS techniques.

color fringing: The rainbow-like effect that
appears around text characters when they are
displayed in color on most color video monitors.
This fringing is unavoidable because the color-
detection circuitry of most composite video
color monitors cannot respond fast enough to

the changing of the color information during the
text portion of the display. Displaying text in
monochrome makes it more readable.

command: (1) In the Standard C Library, a
paramieter that tells a function which of several
actions to perform. (2) In the APW Shell, a word
that tells APW which utility to execute.

Command key: A modifier key on the

Apple IIGS keyboard, marked with both an Apple
icon and a propeller, the icon used on the
equivalent key on some Macintosh keyboards. It
performs the same functions as the Open Apple
key on standard Apple IT machines.

composite video: A standard video signal that
includes all color and timing information that is
needed by a composite video monitor. Several
video standards are in use around the world:
NTSC video is used in northern America and
Japan; PAL video is used in much of Europe;
SECAM is used in the USSR and many other
countries. The Apple IIGS is capable of
generating both NTSC and PAL video. Compare
RGB.

controlling program: A program that loads and
runs other programs, without itself relinquishing
control. A controlling program is responsible for
shutting down its subprograms and freeing their
memory space when they are finished. A shell, for
example, is a controlling program.

Control Panel: A desk accessory that lets you
change certain system parameters, such as
speaker volume, display colors, and
configuration of slots and ports.

Glossary 283

control registers: Special registers that
programs can read and write, similar to soft
switches. The control registers are specific
locations in the I/0 space ($Cxxx) in bank $EO;
they are accessible from bank $00 if I/O
shadowing is on.

Control-Reset: A combination keystroke on
Apple II computers that usually causes an
Applesoft BASIC program or command to stop
immediately.

CPU: See central processing unit and
Mmicroprocessor.

cursor: A graphic icon displayed by the
operating system or application program that
indicates where the next input from the user is
expected. Different styles of cursors are used
with the Apple IIGS: an arrow, an underbar, a
vertical bar, and an inverse video block.

data: Information transferred to or from or
stored in a computer or other mechanical
communications or storage device.

data block: A 512-byte portion of a ProDOS 16
standard file that consists of whatever kind of
information the file may contain.

decimal: A method of numeric representation
using a base-10 system. Valid digits are 0 through
9. Compare hexadecimal, binary.

delete key: A key on the upper-right corner of
the Apple Ile, Apple Ilc, and Apple 1IGS
keyboards that erases the character immediately
preceding (to the left of) the cursor. Similar to
the Macintosh Backspace key.

desk accessories: Small, special-purpose
programs that are available to the user regardless
of which application is running. The Control
Panel is an example of a desk accessory.

284 Apple IIGs Hardware Reference

desktop user interface: The visual appearance
of a program and the way in which it interacts
with the user. In applications that use the
desktop user interface, commands appear as
options in pull-down menus, and material being
worked on appears in rectangular areas of the
screen called windows. The user selects
commands or other material by using the mouse
to move a pointer around on the screen.

device: A piece of equipment (hardware) used in
conjunction with a computer and under the
computer’s control. Also called a peripheral
device because such equipment is often
physically separate from, but attached to, the
computer.

device driver: A program that manages the
transfer of information between the computer
and a peripheral device.

digital: Descriptive of that which uses signals
representing characters or numbers, signals being
of discrete rather than continuously variable
values, or those produced by pulses of one
current or voltage value.

Digital Oscillator Chip (DOC): An integrated
circuit in the Apple 1IGS that contains 32 digital
oscillators, each of which can generate a sound
from stored digital waveform data in a
wavetable.

DIN: Acronym for Deutsche Industrie Normal, a
European standards organization.

DIN connector: A type of connector with
multiple pins inside a round outer shield.

direct memory access (DMA): A means of fast
data transfer into or out of computer memory to
or from a computer peripheral. A peripheral
device, usually a card in a peripheral /O
expansion slot, puts the 65C816 microprocessor
in an idle state, and takes control of the

computer for a short period of time. Data in
memory may be directly accessed without the
time-consuming usual handshaking and
protocol.

directory: A file that contains a list of the names
and locations of other files stored on a disk.
Directories are either volume directories or
subdirectories. A directory is sometimes called a
catalog.

directory file: A directory. One of the two
principal categories of ProDOS 10 files.
Directory files contain specially formatted
entries that give the names and disk locations of
other files.

direct page: A page (256 bytes) of bank $00 of
Apple 1IGS memory, any part of which can be
addressed with a short (1-byte) address because
its high-address byte is always $00 and its
middle-address byte is the value of the 65C816
direct register. Coresident programs or routines
can have their own direct pages at different
locations. The direct page corresponds to the
6502 processor’s zero page. The term direct page
is often used informally to refer to any part of
the lower portion of the direct-page/stack
space.

direct-page/stack space: A portion of bank $00
of Apple IIGS memory reserved for a program’s
direct page and stack. Initially, the 65C816
processor’s direct register contains the base
address of the space, and its stack register
contains the highest address. In use, the stack
grows downward from the top of the direct-
page/stack space, and the lower part of the
space contains direct-page data.

direct register: A hardware register in the
65C816 processor that specifies the start of the
direct page.

disk drive: A computer peripheral device that
stores digital data on a revolving magnetic
surface. Disk drives may be floppy disk drives
(which use a removable, flexible mylar disk as the
medium) or hard disk drives (which use a fixed
aluminum platter as the medium). Disk drives
retain the information after the computer is
turned off, but are capable of altering the data as
requested by the computer program.

disk operating system: An operating system
whose principal function is to manage files and
communication with one or more disk drives.
DOS and ProDOS are two families of Apple II
disk operating systems.

Disk II drive: A type of disk drive made and
sold by Apple Computer, Inc. for use with the
Apple II, Apple II Plus, and Apple Ile. It uses
5.25-inch disks.

dithering: A technique for alternating the values
of adjacent pixels to create the effect of
intermediate values. Dithering can give the
effect of shades of gray on a black-and-white
display, or more colors on a color display.

DMA: See direct memory access.
DOC: See Digital Oscillator Chip.

DOS: Acronym for disk operating system. An
Apple II disk operating system.

Double Hi-Res: A high-resolution graphics
display mode on Apple I computers with at least
128K of RAM, consisting of an array of points 560
wide by 192 high with 16 colors.

dynamic ROM: A form of read-only memory
(ROM) in which data is retained in memory while
the computer power is off, but is lost as soon as
the system is turned on.

Glossary 285

e flag: One of three flag bits in the 65C816
processor that programs use to control the
processor’s operating modes. The setting of the
e flag determines whether the processor is in
native mode or emulation mode. See also m flag,

x flag.

8-bit Apple II: Another way of saying standard
Apple 11, that is, any Apple IT with an 8-bit
microprocessor (6502 or 65C02).

80-column text card: A peripheral card that
allows the Apple II, Apple II Plus, and Apple Ile
to display text in 80 columns (in addition to the
standard 40 columns).

emulate: To operate in a way identical to a
different system. For example, the 65C816
microprocessor in the Apple IIGS can carry out all
the instructions in a program originally written
for an Apple II that uses a 6502 microprocessor,
thus emulating the 6502.

emulation mode: The 8-bit configuration of the
65C816 processor in which it functions like a
0502 processor in all respects except clock
speed.

event-driven program: A program that waits in
a loop until it detects an event such as a click of
the mouse button. The occurrence of the event
causes the program to take a specific action
based on the event.

external device: See device.

external reference: A reference to a symbol that
is defined in another segment. External
references must be to global symbols.

fatal error: An error serious enough that the
computer must halt execution.

286 Apple IIGs Hardware Reference

firmware: Programs stored permanently in read-
only memory (ROM); most provide an interface
to system hardware. Such programs (for example,
the Control Panel and the Monitor program) are
built into the computer at the factory. They can
be executed at any time but cannot be modified
or erased from main memory. Compare
hardware, software.

FPI: Abbreviation for Fast Processor Interface. A
custom integrated circuit that incorporates most
of the memory organization and address-
decoding functions of the Apple IIGS. One of
this IC’s functions is to slow the system clock to
1.024 MHz whenever access to banks $E0 and E1
is detected.

frequency: The rate at which a repetitive event
recurs. In alternating current (AC) signals, the
number of cycles per second. Frequency is usually
expressed in hertz (cycles per second), kilohertz,
or megahertz.

fringing: Also known as color fringing. The
undesirable effect of rainbow-like colors
obscuring text on the video monitor. Occurs
when 80-column text is displayed in color.

General Logic Unit: A class of custom
integrated circuits used as interfaces between
different parts of the computer.

GLU: See General Logic Unit.

graphics: The display by a computer on a video
monitor of data in memory, to visually represent
figures, charts, graphs, or icons. In the

Apple 1IGS, each pixel on the monitor screen is
directly controllable by bits in the screen. See
also bit map.

hand control: A hand-held device with a knob
and pushbutton that provides the user with a
means for inputting stimuli to the computer for
the purpose of controlling the application
program. Usually used in conjunction with game
software. Compare joystick.

handshaking: The exchange of status
information between a DCE (Data
Communications Equipment) and a DTE (Data
Terminal Equipment), usually a computer and a
peripheral device, used to control the transfer of
data between them. The status information can
be the state of a signal connecting the DCE and
the DTE, or it can be in the form of a character
transmitted with the rest of the data. See also
XOFF, XON.

hardware: Collectively, electronic circuit
components and associated fittings and
attachments. In computers, the computer itself
(the processor), disk drives, and other peripheral
equipment. The saying goes, “If you can touch it,
it's hardware. If you can't, it's software.”
Compare software.

hertz (Hz): The unit of frequency of vibration
or oscillation, defined as the number of cycles per
second. Named for the physicist Heinrich Hertz.
See also kilohertz, megahertz.

hexadecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the six letters
A through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of four bits. In Apple manuals,
hexadecimal numbers are usually preceded by a
dollar sign ($).

high-level language: A programming language
that is relatively easy for people to understand. A
single statement in a high-level language typically
corresponds to several instructions of machine
language. Compare low-level language.

high-order: Referring to the most significant
part of a numerical quantity. In normal
representation, the high-order bit of a binary
value is in the leftmost position; likewise, the
high-order byte of a binary word or long word
consists of the leftmost 8 bits.

Hi-Res: A high-resolution graphics display mode
on the Apple II family of computers, consisting
of an array of pixels 140 wide by 192 high in six
colors or 280 wide by 192 high in monochrome.

IC: See integrated circuit.

image: A representation of the contents of
memory. A code image consists of machine-
language instructions or data that may be loaded
unchanged into memory.

index register: A register in a computer
processor that holds an index for use in indexed
addressing. The 6502 and 65C816
microprocessors used in the Apple II family of
computers have two index registers, called the X
index registerand the Y index register.

input device: The keyboard is the main input
device for the Apple IIGS. Other possible input
devices are the mouse and the graphics tablet.
Almost any device may be used as an ADB input
device, as long as it conforms to the Apple
Desktop Bus protocol. Chapter 6 provides
details on the ADB.

input/output (I/0): The transmitting and
receiving of data to and from peripheral or built-
in devices.

Glossary 287

integrated circuit (IC): A miniature electronic
circuit consisting of many thousands of
transistors and other electronic components by
processing a chip of semiconductor material.
This chip is then cast in a plastic or ceramic
package with metal leads or “legs” used to
connect it to a circuit board. Categories of ICs
are labeled due to their construction process:
monolothic, hybrid, and thin-film are some.
Almost any electronic circuit may be
miniaturized and made into an integrated
circuit.

interrupt: A request made of the microprocessor
by a device, either built-in or external, to receive
urgent data or respond to a recent event. Disk
drives make interrupt requests of the
microprocessor, as do the real-time clock and
the mouse firmware in the Apple IIGS.

interrupt handler: A program, associated with a
particular external device, that executes
whenever that device sends an interrupt signal to
the computer. The interrupt handler performs its
tasks during the interrupt, then returns control to
the computer so it may resume program
execution.

interrupt vector table: A table maintained in
memory by ProDOS 16 that contains the
addresses of all currently active (allocated)
interrupt handlers.

1/0: See input/output.

1/0 expansion slots: The seven rectangular
connectors located on Apple IIGS main logic
board. These slots will accept standard Apple II
peripheral cards and allow the computer to
communicate with peripherals such as printers
and disk drives. See also peripheral card.

288 Apple TIGs Hardware Reference

IWM: Abbreviation for Integrated Woz Machine,
the custom chip used in built-in disk ports on
Apple computers.

joystick: A type of hand control that has a
movable stick to provide x-axis and y-axis inputs
to the computer.

jump table: A table constructed in memory by
the System Loader from all jump-table segments
encountered during a load. The jump table
contains all references to dynamic segments that
may be called during execution of the program.

K: Abbreviation for the prefix kilo-, meaning
1024. A kilobyte (expressed 1K) of memory is
1024 memory locations.

kilobit: 1024 bits, commonly used in specifying
the capacity of memory ICs. Not to be confused
with kilobyte.

kilobyte: 1024 bytes, usually used to describe a
range or size of memory. Compare kilobit.

kilohertz (KHz): A unit of measurement of
frequency, equal to 1000 hertz. See also
megahertz.

language card: Memory with addresses between
$D000 and S$FFFF on any Apple II-family
computer. It includes two RAM banks in the
$Dxxx space, called bank-switched memory. The
language card was originally a peripheral card for
the 48K Apple IT or Apple II Plus that expanded
its memory capacity to 64K and provided space
for an additional dialect of BASIC.

local area network: A high-speed data
communication channel that provides
connections between computers, disk drives,
printers, and other peripherals in a limited
geographic area, such as within a single building
Or campus.

long word: A double-length word. For the
Apple 11Gs, a long word is 32 bits (4 bytes) long.

loop: A section of a program that is executed
repeatedly until a limit or condition is met, such
as an index variable’s reaching a specified ending
value.

Lo-Res: The lowest-resolution graphics display
mode on the Apple II family of computers,
consisting of an array of blocks 48 rows high by
40 columns wide, with 16 available colors.

low-level language: A programming language
that is relatively close to the form the computer’s
processor can execute directly. One statement in
a low-level language corresponds to a single
machine-language instruction. Compare high-
level language.

low-order: Referring to the least significant part
of a numerical quantity. In normal
representation, the low-order bit of a binary
number is in the rightmost position; likewise, the
low-order byte of a binary word or long word
consists of the rightmost 8 bits.

main logic board: The main circuit board in the
computer, which holds the major electronic
components and connectors.

megabit: A unit of measurement, 1,048,576 bits
or 1024 kilobits, commonly used in specifying
the capacity of memory ICs. Not to be confused
with megabyte.

megabyte: 1,048,576 bytes or 1024 kilobytes,
usually used to describe a range or size of
memory. Compare megabit.

megahertz (MHz): A unit of measurement of
frequency, equal to 1,000,000 hertz. See also
kilohertz.

Mega II: A custom, large-scale integrated circuit
that incorporates most of the timing and control
circuits of the standard Apple II; an Apple II on a
chip. It addresses 128K of RAM organized as 64K
main and auxiliary banks and provides the
standard Apple II video display modes, both
text (40-column and 80-column) and graphics
(Lo-Res, Hi-Res, and Double Hi-Res).

memory: Locations within a computer or other
electronic device that retain or “remember” data
as needed by the microprocessor. Two types of
memory are utilized in the Apple Il computers:
random-access (or read/write) memory (RAM),
and read-only memory (ROM).

memory expansion card: A slot card that
contains additional RAM and ROM memory. In
the Apple IIGS, this optional expansion card is to
be used only in the memory expansion slot.
Memory expansion cards for use in the Apple Ile
are not to be used in this computer.

memory expansion slot: The single slot
located on the Apple IIGS main logic board that
accepts an Apple IIGS memory expansion card.
Memory expansion cards designed for other
Apple 1T computers will not work in this slot.

Memory Manager: A program in the Apple IIGS
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory is
available, and allocates memory blocks to hold
program segments or data.

memory-mapped 1/0: The method used for
I/O operations in Apple IT computers, where

certain memory locations are attached to I/O
devices, and /O operations are just memory

load and store instructions.

Glossary 289

m flag: One of three flag bits in the 65C816
processor that programs use to control the
processor’s operating modes. In native mode,
the setting of the m flag determines whether the
accumulator is 8 bits wide or 16 bits wide. See
also e flag, x flag.

microcomputer: Any small computer whose
central processing element is contained on a
single small circuit board or within a single
integrated circuit.

microprocessor: The heart of a microcomputer.
Usually, a single-chip computer element that
contains the control unit, central processing
circuitry, and arithmetic and logic functions and
is suitable for use as the central processing unit
of a microcomputer or a dedicated automatic
control system. In the Apple 1IGS computer, the
microprocessor is the 65C816. Previous Apple II
computers utilize the 6502 and 65C02
microprocessors. Some microprocessors used in
other computers are the 68000, the 8080, the Z80,
and the 8086.

modem: Acronym for modulator-demodulator.
A computer peripheral device that allows
computers to transfer digital information over
conventional telephone lines. Modems usually
connect to the computer’s serial port, but may
instead plug into a peripheral expansion slot.

monitor: See video monitor.

Monitor program: A program built into the
firmware of Apple II computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level.

290 Apple IS Hardware Reference

monochrome: Displaying video in one color and
the background in another, frequently black and
white, but not necessarily. The Apple IIGS
monochrome default is white characters on a
medium blue background.

MOS: Acronym for metal oxide semiconductor, a
method of semiconductor integrated-circuit
fabrication on silicon using layers of silicon
dioxide in the make-up of the devices. Compare
CMOS.

mouse: A small device you move around on a flat
surface next to your computer. The mouse
controls a pointer on the screen whose
movements correspond to those of the mouse.
You use the pointer to select operations, to
move data, and to draw within graphics
programs.

move: To change the location of a group of data
bytes in memory. The Memory Manager may
move blocks to consolidate memory space.

native mode: The 10-bit operating
configuration of the 65C816 processor.

NMOS: One of several methods of making
integrated circuits out of silicon; a metal-oxide
semiconductor device made on a p-type
substrate using n-type source and drain contacts.

NTSC: (1) Abbreviation for National Television
Standards Committee. The committee that
defined the standard format used for
transmitting broadcast video signals in the
United States. (2) The standard video format
defined by the NTSC, also called composite video
because it combines all the video information,
including color, into a single signal.

null: Zero.

128K Apple II: Any standard Apple IT with both
main and auxiliary 64K banks of RAM. That
includes all models of the Apple Ilc and some
models of the Apple Ile, including those with the
Extended 80-Column Text Card installed. The
Apple 11GS is not a 128K Apple II in the strict
sense, even though it includes both 64K banks of
RAM and is capable of running programs
designed for a 128K Apple IL

opcode: See operation code.

Open Apple: A modifier key on some Apple II
keyboards. On the Apple IIGS keyboard, the
equivalent key is called the Command key; it is
marked with both an Apple icon and a propeller,
the icon used on some Macintosh keyboards.

operand: (1) In assembly language, the part of an
instruction that follows the operation code. The
operand is used as a value or an address, or to
calculate a value or an address. (2) In object
module format, an operation code that is
followed by a single value that constitutes part
of an expression. The value following the
operand opcode is acted on by an operator.

operating system: A general-purpose program
that organizes the actions of the various parts of
the computer and its peripheral devices. See also
disk operating system.

operation code: The part of a machine-language
instruction that specifies the operation to be
performed. Often called opcode.

operator: In object module format, an
operation code that specifies an arithmetic or
logical operation in an expression to be
performed on one or two variables that precede
it. The variables acted on by an operator are
identified by operand opcodes that precede
them.

oscillator: Traditionally, an electronic circuit
that generates a constant or variable frequency
signal. As used in the Digital Oscillator Chip in
the Apple IIGs, the oscillators are actually
address generators, pointing to data bytes in
sound memory.

page: (1) A portion of memory 256 bytes long
and beginning at an address that is an even
multiple of 256. Memory blocks whose starting
addresses are an even multiple of 256 are said to
be page-aligned. (2) (Usually capitalized.) An
area of main memory containing text or graphics
information being displayed on the screen.

PAL: Acronym for phase alternating lines. A video
standard originated in England and used in other
European countries.

parallel: (1) The simultaneous occurrence of
more than one phenomenon. (2) The connection
of a group of wires for the purpose of
conducting bits of data simultaneously, rather
than one at a time (via a serial connection).

peripheral card: A removable printed-circuit
board that plugs into one of the seven I/O
expansion slots, allowing the computer to use a
peripheral device or to perform some subsidiary
or peripheral function. These cards may be self-
contained (such as a clock card) or an interface
card (such as a disk interface card) with a cable
connecting the card and the peripheral.

peripheral device: An input or output (or
input/output) device, usually external to the
computer (but which may reside on a card in a
peripheral-expansion slot), that performs some
secondary function for the computer. Printers,
disk drives, modems, and video monitors are
examples of peripheral devices.

Glossary 291

peripheral expansion slot: The seven slots at
the rear of the main logic board that will accept
most Apple II peripheral expansion cards. Each
slot has 50 pins, which carry required power and
signals to and from the peripheral cards.

phase: (1) A stage in a periodic process. A point
in a cycle. For example, the 65C816
microprocessor uses a clock cycle consisting of
two phases called 00 and 1. (2) The relationship
between two periodic signals or processes.

pixel: Short for picture element. The smallest dot
you can draw on the screen. Also, a location in
video memory that corresponds to a point on
the graphics screen when the viewing window
includes that location. In the Macintosh display,
each pixel can be either black or white, so it can
be represented by a bit; thus, the display is said
to be a bit map. In the Super Hi-Res graphics
display on the Apple IIGS, each pixel is
represented by either two or four bits; the
display is not a bit map, but rather a pixel map.

pixel map: A set of values that represents the
positions and states of the set of pixels making
up an image. Compare bit map.

pointer: An item of information consisting of
the memory address of some other item. For
example, the 65C816 stack register contains a
pointer to the top of the stack.

pop: See pull.

power supply: The large metal box inside the
Apple IIGS that divides and conditions the
household current, supplying the voltages
required by the main logic board and some
peripheral devices.

292 Apple IIGS Hardware Reference

ProDOS: A family of disk operating systems
developed for the Apple II family of computers.
ProDOS stands for Professional Disk Operating
System, and includes both ProDOS 8 and ProDOS
16.

ProDOS 8: A disk operating system developed
for standard Apple I computers. It runs on 6502-
series microprocessors. It also runs on the

Apple I1GS when the 65C816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system developed
for 65C816 native mode operation on the

Apple IIGS. It is functionally similar to ProDOS 8
but more powerful.

programmable read-only memory: A type of
ROM device that is programmed after
fabrication, unlike ordinary ROM devices, which
are programmed during fabrication.

PROM: See programmable read-only
memory.

protocol: An agreed-upon formal hardware or
software handshaking between two electronic
devices (usually a computer and a peripheral I/O
device).

Pull: To remove the top entry from a stack, this
instruction moves the stack pointer to the entry
below it. Synonymous with pop. Compare push.

Push: To place a new entry at the top of the
stack, this instruction moves the stack pointer
to the entry above it. Compare pull.

radio frequency (RF): Broadcast frequency
over which radio and television operate.
Generally defined as the radio spectrum between
3 MHz and 3000 MHz.

radio-frequency modulator: A device used to
raise video signals to a frequency that may be
received and displayed by a television, as a
substitute for a standard video monitor when
one is not available.

RAM: See random-access memory.

RAM disk: A portion of memory (RAM) that
appears to the operating system to be a disk
volume. Files in a RAM disk can be accessed

much faster than the same files on a floppy disk
or hard disk.

random-access device: See block device.

random-access memory (RAM): Volatile
memory within a computer or other electronic
device. Data are retained as long as power is
supplied to the memory chip. Once the power is
disconnected, the data are lost. Compare read-
only memory.

read-only memory (ROM): Nonvolatile,
permanent memory. ROM ICs may be written
once, usually in the development of the
computer. Data are retained in the memory even
after power is disconnected. Special ROM ICs
allow you to change the data in them under
specific conditions such as ultraviolet light
(EPROMs [erasable programmable read-only
memory]), or high voltages (EEPROMs
electrically erasable programmable read-only
memory]). Normally, however, ROM ICs are
written once.

read/write memory: See random-access
memory.

real-time clock (RTC): A custom IC that, once
set, retains the current time of day, day, month,
and year. Chapter 7 provides details of the RTC
and other built-in I/O devices.

RF: See radio frequency.

RF modulator: See radio-frequency
modulator.

RGB: Abbreviation for red, green, and blue. A
method of displaying color video by
transmitting these three colors as three separate
signals. There are two ways of using RGB with
computers: TTL RGB, which allows the color
signals to take on only a few discrete values; and
analog RGB, which allows the color signals to
take on any values between their upper and lower
limits, for a wide range of colors. The Apple 1IGS
uses analog RGB; connect only RGB monitors
using analog RGB to the RGB video connector at
the rear of the computer. Compare composite
video.

ROM: See read-only memory.

ROM disk: A feature of some operating systems
making it possible to use read-only memory
(ROM) as a disk volume. Often used for making
applications permanently resident. See also RAM
disk.

RS-232-C: A common standard for serial data-
communication interfaces.

RS-422: A standard for serial data-
communication interfaces, different from the
RS-232 standard in its electrical characteristics
and in its use of differential pairs for data
signals. The serial ports on the Apple IIGS use RS-
422 devices modified so as to be compatible
with RS-232-C devices.

RTC: See read-only memory.
SCC: See Serial Communications Controller.

schematic diagram: A diagram using special
figures to represent ICs, logic functions, and
interconnecting wires, to describe a circuit.
Schematic diagrams for the Apple 1IGS main logic
board are located in the Addendum.

Glossary 293

screen holes: Locations in the text display
buffer (text Page 1) used for temporary storage
either by I/O routines running in peripheral-card
ROM or by firmware routines addressed as if they
were in card ROM. Text Page 1 occupies memory
from $0400 to $O7FF; the screen holes are
locations in that area that are neither displayed
nor modified by the display firmware.

SECAM: A French acronym meaning “sequential
color with memory.” A video standard
originating in France and used in the USSR and
other countries.

sector: A division of a track on a disk. When a
disk is formatted, its surface is divided into
tracks and sectors.

semiconductor: A class of materials whose
resistivity lies between that of conductors and
insulators, for example, germanium and silicon.
Solid-state electronics is based on the use of
semiconductors.

serial: A single-wire connection for the purpose
of transferring bits of data one at a time, usually
between a computer and a peripheral device.
Compare parallel.

Serial Communications Controller (SCC): A
type of communications IC used in the

Apple 1IGS. The SCC can run synchronous data
transmission protocol and thus transmit data at
faster rates than the ACIA. Compare ACIA.

serial port: The two connectors located at the
back of the Apple IIGS main logic board that
provide a means for communicating with
peripherals (such as printers and local area
networks) using a serial interface.

294

Apple 1IGs Hardware Reference

shadowing: The process whereby any changes
made to one part of the Apple IIGS memory are
automatically and simultaneously copied into
another part. When shadowing is on, information
written to bank $00 or $01 is automatically
copied into equivalent locations in bank $EO or
$E1. Likewise, any changes to bank $E0 or $E1
are immediately reflected in bank $00 or $01.

silicon: The semiconductor used in a majority of
solid-state electronic components and
integrated circuits.

68000: The microprocessor used in the
Macintosh and Macintosh Plus. The 68000 has 32-
bit data and address registers.

65C816: The microprocessor used in the
Apple IIGS. The 65C816 is a CMOS device with
16-bit data registers and 24-bit address registers.

65C02: A CMOS version of the 6502; the
microprocessor used in the Apple Ilc and in the
enhanced Apple Ile.

6502: The microprocessor used in the Apple II, in
the Apple II Plus, and in early models of the
Apple Ile. The 6502 is a MOS device with 8-bit
data registers and 10-bit address registers.

04K Apple II: Any standard Apple II that has at
least 64K of RAM. That includes the Apple Ic,
the Apple Ile, and an Apple II or Apple II Plus
with 48K of RAM and the language card installed.

SmartPort: A set of firmware routines
supporting multiple block devices connected to
the Apple IIGS disk port.

soft switch: A location in memory that
produces some specific effect whenever its
contents are read or written.

software: A group of instructions to the
microprocessor, instructing it to perform certain
functions, such as performing computations,
displaying data on a monitor, reading data from
and writing data to a disk. The group of
instructions is known collectively as a program.
Compare application program.

special memory: On an Apple IIGS, all of banks
$00 and $01, and all display memory in banks $E0
and $E1. So called because it is the memory
directly accessed by standard Apple II programs
running on the Apple IIGS.

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing them to be removed in last-
in, first-out (LIFO) order. The term the stack
usually refers to the particular stack pointed to
by the 65C816's stack register.

stack register: A hardware register in the 65C816
processor that contains the address of the top of
the processor’s stack.

standard Apple II: Any computer in the Apple II
family except the Apple IIGS. That includes the
Apple 11, the Apple II Plus, the Apple Ile, and the
Apple Ilc.

start up: To get the system running. Starting up
involves loading system software from disk, and
then loading and running an application. Also
called boot.

Super Hi-Res: A high-resolution graphics display
mode on the Apple IIGS, consisting of an array of
points 320 wide by 200 high with 16 colors or 640
wide by 200 high with 16 colors (with
restrictions).

sync signal: A signal that exists for the purpose
of synchronizing two devices. Frequently
generated by a video generator and used by a
video monitor to synchronize the video display
to the separate video information. In the
Apple IIGS, the sync signal is mixed with the
video information resulting in the composite
video signal.

synthesizer: A hardware device capable of
producing sound by creating it digitally, and then
converting it into an analog waveform that you
can hear.

system disk: A disk that contains the operating
system and other system software needed to run
applications.

system software: The components of a
computer system that support application
programs by managing system resources such as
memory and I/O devices.

text window: That portion of the screen that is
reserved for text. After starting the computer,
the firmware uses the entire display for text.
However, if you wish, you can restrict the text
video activity to any rectangular portion of the
display.

tool: See tool set.
toolbox: See “Apple 1IGS Toolbox.”

tool set: A group of related routines (usually in
firmware), available to applications and system
software, that perform necessary functions or
provide programming convenience. The Memory
Manager, the System Loader, and QuickDraw II
are tool sets.

track: One of a series of concentric circles on a
disk. When a disk is formatted, its surface is
divided into tracks and sectors.

Glossary 295

TTL RGB: A type of video monitor that can
accept only a limited number of digital values
and display only a correspondingly limited
number of colors. Stands for transistor-transistor
logic, red, green, blue. Compare analog RGB.

unbuffered: A style of input and output that
does not use a buffer for 1/0O; reading and writing
is done one character at a time.

VBL: Short for vertical blanking, an interrupt
signal generated by the video timing circuit each
time it finishes a vertical scan, 60 times a second.

VGC: See Video Graphics Controller.

video: An electrical signal containing
information that may be obtained visually when
displayed on a video monitor. Information
organized or transmitted in video form. See also
NTSC, PAL, SECAM.

Video Graphics Controller (VGC): The custom
IC on the Apple 1IGS main logic board
responsible for generating all video used in the
Apple TIGS.

video monitor: A display device that receives
video signals by direct connection only.

wavetable: A group of data bytes in memory
used as data by the DOC to generate sound. The
wavetable is built by using the DOC to digitize
an analog-input signal and placing the resulting
data bytes in sound RAM memory.

296

Apple 1IGs Hardware Reference

word: A group of bits that is treated as a unit.
For the Apple IIGs, a word is 16 bits (2 bytes)
long.

write-only memory: A form of computer
memory into which information can be stored
but never, ever retrieved.

x flag: One of three flag bits in the 65C816
processor that programs use to control the
processor’s operating modes. In native mode,
the setting of the x flag determines whether the
index registers are 8 bits wide or 16 bits wide.
See e flag, m flag.

XOFF: A special character (ASCII value $11) used
for controlling the transfer of data between a
microcomputer and a serial peripheral device.
When one piece of equipment receives an XOFF
character from the other, it stops transmitting
characters until it receives an XON. See
handshaking, XON.

XON: A special character (ASCII value $13) used
for controlling the transfer of data between a
microcomputer and a serial peripheral device.
See handshaking, XOFF.

zero page: The first page (256 bytes) of memory
in a standard Apple II computer (or in the

Apple IIGS computer when running a standard
Apple II program). Because the high-order byte
of any address in this part of memory is zero,
only a single byte is needed to specify a zero-
page address. Compare direct page.

Index

A

accumulator 210
ACIA. See asynchronous
communications interface
adapter
activator 146
ADB mouse 147-148
A/D Converter register 109
addressing modes 208
Address Pointer registers 104, 105,
106,107
address wrapping 31
analog inputs (PDLO through
PDL3) 167
annunciator memory locations
167
annunciator outputs (ANO
through AN3) 166
Apple Desktop Bus 4,7, 47,
121-123, 166, 247
addresses 136, 137, 144-145
broadcast signals 137-139
collision detection 146
Command/Data register 128,
129
commands 134-140
device handlers 144-145
device registers 140-144
error conditions 139
General Logic Unit (GLU)
127-133
Keyboard Data register 128,
129
microcontroller 127
Modifier Key register 130
Mouse Data register 130, 131
moving addresses 144-145
peripheral devices 140-148
service request 146
Status register 132-133

Applesoft BASIC 2
AppleTalk 47,159, 183
Apple Ilc 1-3
Apple Ile 1-3, 125
ASCII 64,79, 128,129, 263-267
asynchronous communications
interface adapter (ACIA)
160, 180
Attention/Sync signal (ADB) 150
auxiliary memory 4146, 65
bank 15
select switches 44

B

background colors 62, 81

bank $00 30, 31, 32-35, 41, 42, 46, 48

bank $01 30, 31, 34, 35, 41, 42, 46, 48

bank SE0 30, 31, 4548

bank $E1 30, 31,4548

bank switching 30, 38

auxiliary memory 43

bit cell (ADB) 133-134

bits 256-257

Border Color register 81-82, 169,
170

border colors 62, 81-82

broadcast signals (ADB) 137-139

bus. See Apple Desktop Bus

bytes 257

C

character generator 251-253
character sets 78-80
ASCIL 64,79
display 79
clocks 3,146
real-time 3, 58, 82, 169-170
signals 194-199
collision detection (ADB) 146

color fringing 62
Command/Data register 128, 129
compatibility 2-3, 151, 176
composite video connector 7
connectors -7

Apple Desktop Bus 3,7

composite video 7,70

disk drive 7

disk-port 150152

game 7, 164-165

power 203

RGB video 7

serial port 7
Control Panel 3
control register 169

D

data bank register 210
decimal numbers 258-260
demultiplexer 119-120
desk accessories 47
desktop user interface 244
device addresses (ADB) 144-145
device handlers (ADB) 144-145
device registers 140-144
Digital Oscillator Chip (DOC) 8,
107-118
A/D Converter register 109
Frequency High and Frequency
Low registers 113
Oscillator Control registers
111,112
Oscillator Data registers 111
Oscillator Enable register 108
Oscillator Interrupt register
108-109
register addresses 110
Volume registers 111

297

Digital Oscillator Chip (continued)
Wavetable Pointer registers
115
Wavetable Size registers 114,
116
digital-to-analog converter 115
direct memory access 15, 176,
198-199
cards 177-178
daisy chain 180, 194
direct page 32,42, 48
Direct register 214
disk 150-159
disk-port connector 151-152
Disk IT 23-24
Handshake register 158
Interface register 152-153
Mode register 155-156
port 7,149, 150-159
read/write Data register
158-159
Status register 157
display buffers 18-19, 20-22, 4647
Double Hi-Res graphics 90-91
Super Hi-Res graphics 90-91
display mode switching 72-74
display pages 71-77
Hi-Res 76
text 48
dithering 98,99
DOC. See Digital Oscillator Chip
DuoDisk 151
duty-cycle modulation (ADB)
133-134

E

80-column text display 41, 63, 64,
06,71, 76, 79-80

emulation mode 32, 207, 208, 209,
210-211

F

Fast Processor Interface (FPI) 8,
11,14,176

firmware 47, 243

Flush command 134, 136, 137

40-column text display 61, 63, 64,
05,71,72,75,76-77,78,80

Frequency High and Frequency

Low registers (DOC) 113

game I/0 165-168

port, 165

ghost addresses 52
Global Reset command 138
graphics 84-99

Color-Fill 89, 92,98

Double Hi-Res 33, 41, 47, 48, 65,
09, 71,76,87, 83

Hi-Res 20-21, 35, 47, 48, 64, 68,
71,72,75, 84,8587

Lo-Res 34,061,064, 67,71,72,75,
76, 84-85

monochrome 84-85

monochrome/color register
82-83

Super Hi-Res 20-21, 41, 47, 63,
76,89,99

hand controls 7, 164, 166-167
Handshake register 158
hexadecimal numbers 258-260

input buffer 33
instructions, assembly language

27

Integrated Woz Machine (IWM)

153-159
states 155

interrupts 58-01, 127, 193194

daisy chains 174, 194
oscillator 109, 112
scan-line 58, 89, 92-94

/O 8,19, 24-25,177-181

memory locations 168

I/O expansion slots 171-199

cards for slot 3 193

direct memory access (DMA)
177-178

expansion ROM space 185-186

expansion slot signals 174-175

1/O cards 177

I/0 memory space 191-193

loading 180-181

208 Apple IIGS Hardware Reference

peripheral-card 1/O space 184

peripheral-card RAM space
187

peripheral-card ROM space
184-185

RAM 190

slot number 188

IWM. See Integrated Woz

Machine

J
joystick 3, 6,7, 164

K

keyboard 3,125-126, 247-250
Keyboard Data register 128, 129
keyboard strobe 125-126

L

language card 19, 20, 35-39, 4243,
48,1%4
bank select switches 36-39
Listen command (ADB) 137, 140

M

main logic board 5
main memory 65
Megall 8 11,12, 13, 14, 15, 16, 56,
176
memory 8, 13
allocation 16, 17
auxiliary 41-45, 65
auxiliary banks 48
banks 29-31
bank switching 36
built-in 29-49
expansion ROM space 31,
185-186
[/O memory space 191-193
language card 42
main 65
main bank 48
map 29-30
Memory Manager 31, 47
peripheral-card 183-187
peripheral-card ROM space
184-185
RAM 2,3,8,9, 12,13, 14, 24, 28,
29,30, 35-36, 38, 127

refresh 24

reserved pages 32-35

ROM 3,8,9,12, 13, 14, 37, 38, 39,

127,191, 192-193

shadowing 15, 18-24, 49
memory expansion 49-54

card 29, 31

expansion signals 50, 51

expansion slot 29, 49, 50-51,

173-175

extended RAM 51-52

extended RAM mapping 52-54

extended ROM 52
Memory Manager 31, 47
microcontroller 121,122, 126-127
microprocessor 2, 3,5, 8, 183, 188
modem 159, 183
Mode register 155-150
Modifier Key register 130
modifier keys 126
Monitor firmware 3, 32, 47, 194
Monochrome/Color register 82-83
monochrome monitors 62
Mouse Data register 130, 131, 132
MouseText 64, 78, 253
multiplexer 109

N

native mode 32, 208, 209, 210, 211

negative-decimal numbers
259-260

New-Video register 16, 89-91

n-key rollover 125

NTSC video 14, 63,70, 86, 87

(0]

IMB Apple 1IGS, additional
features 4

keyboard 147
power-on status 22, 23
RAM 24, 29-31, 49, 53, 54
ROM 30-32, 49, 52
toobox 4

opcodes 208, 228, 235

operating speed 215

operating systems 245

oscillator 115, 117-118
Control registers 111,112
Data registers 111
Enable register 108
Interrupt register 107, 108-109
interrupts 111, 112

P, Q
packet 133
palette 92,94-97, 98, 99
peripheral cards 6, 187-183
addressing 188-189
1/O base addresses 189-190
RAM memory locations 187
peripheral expansion slots 6
peripheral identification numbers
261-262
peripheral interface adapters
(PIAs) 180
pixels 85-89, 95-97,98
power connector 203
printer 159, 183
ProDOS 151, 245
program bank register 209, 214
program counter 214
Program Status register 211-213

R
radio-frequency video modulator

03

RAM memory. See memory
read/write Data register 158-159
real-time clock 3, 58, 82, 169-170
reserved pages 32-35
Reset signal 138
RGB monitor 62, 63
RGB video 9,70

connector 7,63, 70
ROM memory. See memory

S

scan line 58, 92-93
control bytes 92, 94
Screen Color register 81
screen holes 34, 49, 187
Send Reset command 137

Serial Communications Controller
(SCC) chip 160-164
Command register 161-163
data register 161-163
serial port 7,9, 159164, 183
service request (ADB) 146
Service Request signal 138-139
shadowing 15, 18-24, 49
shadow register 19-22
0502 2,3, 207-208, 209, 210
65C816 2,3,8,11,12,176, 178,
205-238
emulation mode 207-208,
210-213, 214-215
native mode 208-209, 210-211
65C02 207-208
Slot register 181-183
slots 5-6, 171-199
memory expansion 29, 49, 51
SmartPort 151
soft switches 13, 38 43, 45, 72-74,
154-155, 168, 191-193
auxiliary-memory 43, 45
display 72-74
sound 101-102, 115, 117-120
address calculation 117
data register 105, 106, 107
stereo 119-120
Sound Control register 104-105,
106, 107
Sound GLU 104-107
registers 104
sound synthesizer 8
speaker 103, 107
speed register 22-24
stack 33, 48, 211
overflow 33
stack page 43
stack pointer 211
start bit 135
state register 39-40
Status register 132-133, 157
stereo sound 119-120
sticky keys 4, 147
stop bit 135
switch inputs (SWO through SW3)
166,168
system software 43

Index 299

T

Talk command (ADB) 134, 136,
137,140
text colors 62, 81
text displays 78-83
color text 81-83
80-column 41, 61, 63-64, 65, 66,
71,73,75,76,77,78,80
40-column 61, 63-64, 65, 71, 72,
75, 76-77,79-80
text Page 1 71
text Page 2 71
text window 76-77
memory locations 77
toolbox 244
transactions 133, 134-135
2-key lockout 125

U
UniDisk 151

A%

video 7, 56
Apple I 62-64
background colors 62, 81
border colors 62, 81-82
connector 70

display 63
display modes 61
display pages 71-77
Double Hi-Res 64
Hi-Res 64
Low-Res 64
monochrome 63, 65
NTSC 70
RAM 57
RGB 70
text colors 62, 81
video buffer 95, 176
video buffers 102, 176
video displays 61-62
Apple I specifications 64
locations 72
mixed-mode 64
Video Graphics Controller 8, 56-61,
8
interrupts 58-61
Interrupt-Clear register 60-61
Interrupt register 59-60

300 Apple IIGS Hardware Reference

video monitor 7
composite 63
RGB 62, 63

voltage 202

Volume registers 111

W

wavetable 104, 108, 113, 114, 115

Wavetable Pointer registers 115,
116

Wavetable Size registers 113, 114,
116

X

X Index register 210, 211-212, 214

Y Index register 210, 211-212, 214

Y/
zero page 32,48

Addendum Schematic Diagrams

This Addendum contains schematic diagrams for the main circuit board
of the original Apple I1GS and the 1 MB Apple IIGS.

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system
using Apple Macintosh®
computers and

Microsoft® Word software.
Proof and final pages were
created on the Apple
LaserWriter® printers. Line art
was created using Adobe
Illustrator™. POSTSCRIPT®, the
page-description language for
the LaserWriter, was developed
by Adobe Systems
Incorporated.

Text type and display type are
Apple’s corporate font, a
condensed version of
Garamond. Bullets are ITC Zapf
Dingbats®. Some elements,
such as program listings, are set
in Apple Courier.

The Official
Publication from
Apple Computer, Inc.

> %2b.95 FPT

-t
- |

Apple Ilcs. Hardware Reference, second edition

Written and produced by the Developer Technical Publications group at Apple Computer, this
reference is for software developers and hardware developers creating products for the Apple
IIs and the 1IMB Apple IIGS.

The Apple Ils Hardware Reference, second edition, provides an extensive description of all
aspects of internal operation and presents the latest information on the machine’s hardware—
including the interface requirements of input devices, video display, disk drives, and serial ports.
This information is essential to the hardware designers and programmers writing drivers for
peripheral devices. The Apple lls Hardware Reference is the definitive reference for these
particular Apple IT computers.

The manual describes
» the architecture of both the Apple Il6s and 1 MB Apple IlGs computers

« memory organization, including standard RAM (250K in the Apple IIcs and 1 MB in the
1 MB Apple 1lGs), standard ROM (128K in the Apple Il6s and 250K in the 1 MB Apple IIcs,
and up to 8 MB of expansion RAM

« the video display modes, including Super Hi-Res graphics mode
« the sound capabilities of the computers, including the 15-voice synthesizer

« the Apple Desktop Bus™ for connecting keyboards and other input devices (including the
new keyboard mouse and sticky keys support for disabled users)

« the built-in input/output ports and real-time clock

« the seven input/output expansion slots for connecting peripheral devices, including timing
parameters and diagrams

« the sixteen-bit 65C816 microprocessor

The appendixes contain supplementary tables and frequently used information about the Apple
lIcs computers. Also included is an addendum containing schematic diagrams for both versions
of the computer.

Printed in U.S.A.

Apple Computer, Inc.

20525 Mariani Avenue 2695
Cupertino, California 95014

408996 1010

TLX 171 576

ddison-Wesley Publishing Company, Inc.
ISBN 0-201-52389-

